Transcritical and zero-Hopf bifurcations in the Genesio system

被引:0
|
作者
Pedro Toniol Cardin
Jaume Llibre
机构
[1] Universidade Estadual Paulista (UNESP),Departamento de Matemática, Faculdade de Engenharia de Ilha Solteira
[2] Universitat Autònoma de Barcelona,Departament de Matemàtiques
来源
Nonlinear Dynamics | 2017年 / 88卷
关键词
Genesio system; Transcritical bifurcation; Zero-Hopf Bifurcation; Averaging theory; 34C23; 34C25; 37G10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the existence of transcritical and zero-Hopf bifurcations of the third-order ordinary differential equation x⃛+ax¨+bx˙+cx-x2=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dddot{x}} + a {\ddot{x}} + b {\dot{x}} + c x - x^2 = 0$$\end{document}, called the Genesio equation, which has a unique quadratic nonlinear term and three real parameters. More precisely, writing this differential equation as a first-order differential system in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document} we prove: first that the system exhibits a transcritical bifurcation at the equilibrium point located at the origin of coordinates when c=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c=0$$\end{document} and the parameters (a, b) are in the set {(a,b)∈R2:b≠0}\{(0,b)∈R2:b>0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{(a,b) \in \mathbb {R}^2 : b \ne 0\} {\setminus } \{(0,b) \in \mathbb {R}^2 : b > 0\}$$\end{document}, and second that the system has a zero-Hopf bifurcation also at the equilibrium point located at the origin when a=c=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=c=0$$\end{document} and b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b>0$$\end{document}.
引用
收藏
页码:547 / 553
页数:6
相关论文
共 50 条
  • [21] ZERO-HOPF BIFURCATION IN NUCLEAR SPIN GENERATOR SYSTEM
    Shi, Renxiang
    Yu, Jiang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (01): : 23 - 31
  • [22] Zero-Hopf bifurcation and Hopf bifurcation for smooth Chua’s system
    Junze Li
    Yebei Liu
    Zhouchao Wei
    Advances in Difference Equations, 2018
  • [23] Analysis of Zero-Hopf Bifurcation in a Simple Jerk System
    Guo, Biyao
    Zhou, Yan
    Zhang, Wei
    Liu, Yu
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (13):
  • [24] PERIODIC ORBITS IN THE ZERO-HOPF BIFURCATION OF THE ROSSLER SYSTEM
    Llibre, Jaume
    ROMANIAN ASTRONOMICAL JOURNAL, 2014, 24 (01): : 49 - 60
  • [25] Algebraic Analysis of Zero-Hopf Bifurcation in a Chua System
    Huang, Bo
    Niu, Wei
    Xie, Shaofen
    SYMMETRY-BASEL, 2022, 14 (05):
  • [26] Zero-Hopf bifurcation in the FitzHugh-Nagumo system
    Euzebio, Rodrigo D.
    Llibre, Jaume
    Vidal, Claudio
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (17) : 4289 - 4299
  • [27] Zero-Hopf Periodic Orbits for a Rossler Differential System
    Llibre, Jaume
    Makhlouf, Ammar
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (12):
  • [28] Local-Activity and Simultaneous Zero-Hopf Bifurcations Leading to Multistability in a Memristive Circuit
    Messias, Marcelo
    Reinol, Alisson de Carvalho
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (15):
  • [29] Zero-Hopf Bifurcations in Three-Dimensional Chaotic Systems with One Stable Equilibrium
    Ibre, Jaume
    Messias, Marcelo
    Reinol, Alisson de Carvalho
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (13):
  • [30] Zero-Hopf bifurcation in a 3D jerk system
    Braun, Francisco
    Mereu, Ana C.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 59