Bias-reduced estimators of the Weibull tail-coefficient

被引:0
|
作者
Jean Diebolt
Laurent Gardes
Stéphane Girard
Armelle Guillou
机构
[1] Université de Marne-la-Vallee,CNRS
[2] INRIA Rhône-Alpes,Team Mistis
[3] Université Strasbourg 1,IRMA, Département de Mathématiques
来源
TEST | 2008年 / 17卷
关键词
Weibull tail-coefficient; Bias-reduction; Least-squares approach; Asymptotic normality; 62G05; 62G20; 62G30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the problem of the estimation of the Weibull tail-coefficient θ. In particular, we propose a regression model, from which we derive a bias-reduced estimator of θ. This estimator is based on a least-squares approach. The asymptotic normality of this estimator is established. We also introduce an adaptive selection procedure to determine the number of upper order statistics to be used in the estimator. A simulation study as well as an application to a real data set are provided in order to prove the efficiency of the above mentioned methods.
引用
收藏
页码:311 / 331
页数:20
相关论文
共 50 条