Using the Robust Principal Component Analysis to Identify Incorrect Aerological Data

被引:0
|
作者
A. M. Kozin
A. D. Lykov
I. A. Vyazankin
A. S. Vyazankin
机构
[1] Central Aerological Observatory,
[2] Sechenov First Moscow State Medical University,undefined
来源
关键词
aerological data; geopotential height; outliers; machine learning; Robust Principal Component Analysis (RPCA);
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:631 / 639
页数:8
相关论文
共 50 条
  • [21] Point cloud denoising using robust Principal Component Analysis
    Narvaez, Esmelde A. Leal
    Narvaez, Nallig Eduardo Leal
    GRAPP 2006: PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS THEORY AND APPLICATIONS, 2006, : 51 - +
  • [22] Fast and robust ancestry prediction using principal component analysis
    Zhang, Daiwei
    Dey, Rounak
    Lee, Seunggeun
    BIOINFORMATICS, 2020, 36 (11) : 3439 - 3446
  • [23] Robust Principal Component Analysis using Density Power Divergence
    Roy, Subhrajyoty
    Basu, Ayanendranath
    Ghosh, Abhik
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [24] Scalable Robust Principal Component Analysis Using Grassmann Averages
    Hauberg, Soren
    Feragen, Aasa
    Enficiaud, Raffi
    Black, Michael J.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (11) : 2298 - 2311
  • [25] Recovery of Corrupted Data in Wireless Sensor Networks Using Tensor Robust Principal Component Analysis
    Zhang, Xiaoyue
    He, Jingfei
    Li, Yunpei
    Chi, Yue
    Zhou, Yatong
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (10) : 3389 - 3393
  • [26] Background initialization in video data using singular value decomposition and robust principal component analysis
    Gowda V.B.
    Gopalakrishna M.T.
    Megha J.
    Mohankumar S.
    International Journal of Computers and Applications, 2023, 45 (09) : 600 - 609
  • [27] Low-Rank Approximation of Data Matrices Using Robust Sparse Principal Component Analysis
    Pfeiffer, Pia
    Filzmoser, Peter
    COMBINING, MODELLING AND ANALYZING IMPRECISION, RANDOMNESS AND DEPENDENCE, SMPS 2024, 2024, 1458 : 357 - 362
  • [28] Robust sparse principal component analysis
    ZHAO Qian
    MENG DeYu
    XU ZongBen
    Science China(Information Sciences), 2014, 57 (09) : 175 - 188
  • [29] Robust Multilinear Principal Component Analysis
    Inoue, Kohei
    Hara, Kenji
    Urahama, Kiichi
    2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 591 - 597
  • [30] Robust Stochastic Principal Component Analysis
    Goes, John
    Zhang, Teng
    Arora, Raman
    Lerman, Gilad
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 33, 2014, 33 : 266 - 274