Correlated Markov Quantum Walks

被引:0
|
作者
Eman Hamza
Alain Joye
机构
[1] Cairo University,Department of Physics, Faculty of Science
[2] UJF-Grenoble 1,undefined
[3] CNRS,undefined
[4] Institut Fourier,undefined
[5] UMR 5582,undefined
来源
Annales Henri Poincaré | 2012年 / 13卷
关键词
Central Limit Theorem; Internal Degree; Large Deviation Principle; Quantum Walk; Permutation Matrice;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the discrete time unitary dynamics given by a quantum walk on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}^d}$$\end{document} performed by a particle with internal degree of freedom, called coin state, according to the following iterated rule: a unitary update of the coin state takes place, followed by a shift on the lattice, conditioned on the coin state of the particle. We study the large time behavior of the quantum mechanical probability distribution of the position observable in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}^d}$$\end{document} for random updates of the coin states of the following form. The random sequences of unitary updates are given by a site-dependent function of a Markov chain in time, with the following properties: on each site, they share the same stationary Markovian distribution and, for each fixed time, they form a deterministic periodic pattern on the lattice. We prove a Feynman–Kac formula to express the characteristic function of the averaged distribution over the randomness at time n in terms of the nth power of an operator M. By analyzing the spectrum of M, we show that this distribution possesses a drift proportional to the time and its centered counterpart displays a diffusive behavior with a diffusion matrix we compute. Moderate and large deviation principles are also proven to hold for the averaged distribution and the limit of the suitably rescaled corresponding characteristic function is shown to satisfy a diffusion equation. An example of random updates for which the analysis of the distribution can be performed without averaging is worked out. The random distribution displays a deterministic drift proportional to time and its centered counterpart gives rise to a random diffusion matrix, the law of which we compute. We complete the picture by presenting an uncorrelated example.
引用
收藏
页码:1767 / 1805
页数:38
相关论文
共 50 条
  • [31] Quantum stochastic walks: A generalization of classical random walks and quantum walks
    Whitfield, James D.
    Rodriguez-Rosario, Cesar A.
    Aspuru-Guzik, Alan
    PHYSICAL REVIEW A, 2010, 81 (02):
  • [32] Exploring complex graphs with 3D quantum walks of correlated photons
    Ehrhardt, Max
    Keil, Robert
    Maczewsky, Lukas
    Heinrich, Matthias
    Szameit, Alexander
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [33] Quantum Walks of Correlated Photon Pairs in Two-Dimensional Waveguide Arrays
    Poulios, Konstantinos
    Keil, Robert
    Fry, Daniel
    Meinecke, Jasmin D. A.
    Matthews, Jonathan C. F.
    Politi, Alberto
    Lobino, Mirko
    Graefe, Markus
    Heinrich, Matthias
    Nolte, Stefan
    Szameit, Alexander
    O'Brien, Jeremy L.
    PHYSICAL REVIEW LETTERS, 2014, 112 (14)
  • [34] Quantum walks of two correlated photons in a 2D synthetic lattice
    Esposito, Chiara
    Barros, Mariana R.
    Hernandez, Andres Duran
    Carvacho, Gonzalo
    Di Colandrea, Francesco
    Barboza, Raouf
    Cardano, Filippo
    Spagnolo, Nicolo
    Marrucci, Lorenzo
    Sciarrino, Fabio
    NPJ QUANTUM INFORMATION, 2022, 8 (01)
  • [35] Quantum walks of two correlated photons in a 2D synthetic lattice
    Chiara Esposito
    Mariana R. Barros
    Andrés Durán Hernández
    Gonzalo Carvacho
    Francesco Di Colandrea
    Raouf Barboza
    Filippo Cardano
    Nicolò Spagnolo
    Lorenzo Marrucci
    Fabio Sciarrino
    npj Quantum Information, 8
  • [36] Rotor walks and Markov chains
    Holroyd, Alexander E.
    Propp, James
    ALGORITHMIC PROBABILITY AND COMBINATORICS, 2010, 520 : 105 - +
  • [37] CENTRAL TERMS OF MARKOV WALKS
    MYERS, LE
    ANNALS OF PROBABILITY, 1976, 4 (02): : 313 - 318
  • [38] CORRELATED RANDOM-WALKS
    DELASELVA, SMT
    LINDENBERG, K
    WEST, BJ
    JOURNAL OF STATISTICAL PHYSICS, 1988, 53 (1-2) : 203 - 219
  • [39] CORRELATED RANDOM-WALKS
    BENDER, EA
    RICHMOND, LB
    ANNALS OF PROBABILITY, 1984, 12 (01): : 274 - 278
  • [40] ON THE CORRELATED WALKS WITH REFLECTING WALLS
    OKAMURA, Y
    TORRES, M
    BLAISTENBAROJAS, E
    FUJITA, S
    ACTA PHYSICA AUSTRIACA, 1981, 53 (03): : 203 - 206