Correlated Markov Quantum Walks

被引:0
|
作者
Eman Hamza
Alain Joye
机构
[1] Cairo University,Department of Physics, Faculty of Science
[2] UJF-Grenoble 1,undefined
[3] CNRS,undefined
[4] Institut Fourier,undefined
[5] UMR 5582,undefined
来源
Annales Henri Poincaré | 2012年 / 13卷
关键词
Central Limit Theorem; Internal Degree; Large Deviation Principle; Quantum Walk; Permutation Matrice;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the discrete time unitary dynamics given by a quantum walk on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}^d}$$\end{document} performed by a particle with internal degree of freedom, called coin state, according to the following iterated rule: a unitary update of the coin state takes place, followed by a shift on the lattice, conditioned on the coin state of the particle. We study the large time behavior of the quantum mechanical probability distribution of the position observable in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}^d}$$\end{document} for random updates of the coin states of the following form. The random sequences of unitary updates are given by a site-dependent function of a Markov chain in time, with the following properties: on each site, they share the same stationary Markovian distribution and, for each fixed time, they form a deterministic periodic pattern on the lattice. We prove a Feynman–Kac formula to express the characteristic function of the averaged distribution over the randomness at time n in terms of the nth power of an operator M. By analyzing the spectrum of M, we show that this distribution possesses a drift proportional to the time and its centered counterpart displays a diffusive behavior with a diffusion matrix we compute. Moderate and large deviation principles are also proven to hold for the averaged distribution and the limit of the suitably rescaled corresponding characteristic function is shown to satisfy a diffusion equation. An example of random updates for which the analysis of the distribution can be performed without averaging is worked out. The random distribution displays a deterministic drift proportional to time and its centered counterpart gives rise to a random diffusion matrix, the law of which we compute. We complete the picture by presenting an uncorrelated example.
引用
收藏
页码:1767 / 1805
页数:38
相关论文
共 50 条
  • [1] Correlated Markov Quantum Walks
    Hamza, Eman
    Joye, Alain
    ANNALES HENRI POINCARE, 2012, 13 (08): : 1767 - 1805
  • [2] Quantum Walks of Correlated Photons
    Peruzzo, Alberto
    Lobino, Mirko
    Matthews, Jonathan C. F.
    Matsuda, Nobuyuki
    Politi, Alberto
    Poulios, Konstantinos
    Zhou, Xiao-Qi
    Lahini, Yoav
    Ismail, Nur
    Worhoff, Kerstin
    Bromberg, Yaron
    Silberberg, Yaron
    Thompson, Mark G.
    O'Brien, Jeremy L.
    SCIENCE, 2010, 329 (5998) : 1500 - 1503
  • [3] Quantum walks of correlated photons
    Peruzzo, Alberto
    Lobino, Mirko
    Matthews, Jonathan C. F.
    Matsuda, Nobuyuki
    Politi, Alberto
    Poulios, Konstantinos
    Zhou, Xiao-Qi
    Lahini, Yoav
    Ismail, Nur
    Worhoff, Kerstin
    Bromberg, Yaron
    Silberberg, Yaron
    Thompson, Mark G.
    O'Brien, Jeremy L.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [4] THE GENERATOR AND QUANTUM MARKOV SEMIGROUP FOR QUANTUM WALKS
    Ko, Chul Ki
    Yoo, Hyun Jae
    KODAI MATHEMATICAL JOURNAL, 2013, 36 (02) : 363 - 385
  • [5] Open Quantum Random Walks and Quantum Markov Chains
    Dhahri, A.
    Mukhamedov, F.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2019, 53 (02) : 137 - 142
  • [6] Open Quantum Random Walks and Quantum Markov Chains
    A. Dhahri
    F. Mukhamedov
    Functional Analysis and Its Applications, 2019, 53 : 137 - 142
  • [7] Return Probability of Quantum and Correlated Random Walks
    Kiumi, Chusei
    Konno, Norio
    Tamura, Shunya
    ENTROPY, 2022, 24 (05)
  • [8] Strongly correlated quantum walks in optical lattices
    Preiss, Philipp M.
    Ma, Ruichao
    Tai, M. Eric
    Lukin, Alexander
    Rispoli, Matthew
    Zupancic, Philip
    Lahini, Yoav
    Islam, Rajibul
    Greiner, Markus
    SCIENCE, 2015, 347 (6227) : 1229 - 1233
  • [9] Open quantum random walks, quantum Markov chains and recurrence
    Dhahri, Ameur
    Mukhamedov, Farrukh
    REVIEWS IN MATHEMATICAL PHYSICS, 2019, 31 (07)
  • [10] Quantum Markov Chains Associated with Open Quantum Random Walks
    Ameur Dhahri
    Chul Ki Ko
    Hyun Jae Yoo
    Journal of Statistical Physics, 2019, 176 : 1272 - 1295