A Generalization of the Isosceles Constant in Banach Spaces

被引:0
|
作者
Baronti, Marco [1 ]
Bertella, Valentina [2 ]
机构
[1] Univ Genoa, Dipartimento Matemat, Via Dodecaneso 35, I-16100 Genoa, Italy
[2] Campus Univ La Spezia, Via Fieschi 16-18, I-19132 La Spezia, Italy
关键词
Orthogonal vectors; isosceles orthogonality; rectangular constant; isosceles constant;
D O I
10.1007/s00009-024-02654-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
N. Gastinel and J.L. Joly defined the rectangular constant mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} in Banach spaces using the notion of orthogonality according to Birkhoff and its generalization mu p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _p$$\end{document}, with p >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 1$$\end{document}. Recently, M. Baronti, E. Casini, and P.L. Papini defined a new constant, the isosceles constant H, in Banach spaces in a very similar way to the rectangular constant, but in this case using the isosceles orthogonality defined by James. In this paper, first of all, we generalize such constant, by defining a new constant Hp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_p$$\end{document} that generalizes the isosceles constant H as well mu p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _p$$\end{document} generalizes mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}. After that, we explain its properties, and we give a characterization of Hilbert spaces in terms of it. Moreover a partial characterization of uniformly non-square spaces is given. We conclude by a conjecture about the characterization of uniformly non-square spaces.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] A geometrical constant and normal normal structure in Banach Spaces
    Zuo, Zhanfei
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [42] On the Class of Banach Spaces with James Constant : Part II
    Komuro, Naoto
    Saito, Kichi-Suke
    Tanaka, Ryotaro
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (06) : 4039 - 4061
  • [43] Diametrically maximal and constant width sets in Banach spaces
    Moreno, J. P.
    Papini, P. L.
    Phelps, R. R.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2006, 58 (04): : 820 - 842
  • [44] ON THE CLASS OF BANACH SPACES WITH JAMES CONSTANT √2, III
    Komuro, Naoto
    Saito, Kichi-Suke
    Tanaka, Ryotaro
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (03): : 865 - 887
  • [45] Spectra of the constant Jacobi matrices on Banach sequence spaces
    Saad R. El-Shabrawy
    Asmaa M. Shindy
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [46] SETS OF CONSTANT WIDTH IN FINITE DIMENSIONAL BANACH SPACES
    EGGLESTON, HG
    ISRAEL JOURNAL OF MATHEMATICS, 1965, 3 (03) : 163 - +
  • [47] On the von Neumann-Jordan constant for Banach spaces
    Kato, M
    Takahashi, Y
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (04) : 1055 - 1062
  • [48] GENERALIZATION OF THE SPHERICAL ISOPERIMETRIC INEQUALITY TO UNIFORMLY CONVEX BANACH-SPACES
    GROMOV, M
    MILMAN, VD
    COMPOSITIO MATHEMATICA, 1987, 62 (03) : 263 - 282
  • [49] BANACH SPACES AND INEQUALITIES ASSOCIATED WITH NEW GENERALIZATION OF CESàRO MATRIX
    Feyzi BA?AR
    Hadi ROOPAEI
    ActaMathematicaScientia, 2023, 43 (04) : 1518 - 1536
  • [50] Banach Spaces and Inequalities Associated with New Generalization of Cesàro Matrix
    Feyzi Başar
    Hadi Roopaei
    Acta Mathematica Scientia, 2023, 43 : 1518 - 1536