A Generalization of the Isosceles Constant in Banach Spaces

被引:0
|
作者
Baronti, Marco [1 ]
Bertella, Valentina [2 ]
机构
[1] Univ Genoa, Dipartimento Matemat, Via Dodecaneso 35, I-16100 Genoa, Italy
[2] Campus Univ La Spezia, Via Fieschi 16-18, I-19132 La Spezia, Italy
关键词
Orthogonal vectors; isosceles orthogonality; rectangular constant; isosceles constant;
D O I
10.1007/s00009-024-02654-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
N. Gastinel and J.L. Joly defined the rectangular constant mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} in Banach spaces using the notion of orthogonality according to Birkhoff and its generalization mu p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _p$$\end{document}, with p >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 1$$\end{document}. Recently, M. Baronti, E. Casini, and P.L. Papini defined a new constant, the isosceles constant H, in Banach spaces in a very similar way to the rectangular constant, but in this case using the isosceles orthogonality defined by James. In this paper, first of all, we generalize such constant, by defining a new constant Hp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_p$$\end{document} that generalizes the isosceles constant H as well mu p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _p$$\end{document} generalizes mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}. After that, we explain its properties, and we give a characterization of Hilbert spaces in terms of it. Moreover a partial characterization of uniformly non-square spaces is given. We conclude by a conjecture about the characterization of uniformly non-square spaces.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Isosceles constant in Banach spaces
    Baronti, Marco
    Casini, Emanuele
    Papini, Pier Luigi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 536 (01)
  • [2] A New Geometric Constant in Banach Spaces Related to the Isosceles Orthogonality
    Yang, Zhijian
    Li, Yongjin
    KYUNGPOOK MATHEMATICAL JOURNAL, 2022, 62 (02): : 271 - 287
  • [3] The Dunkl-Williams constant related to the Singer orthogonality and red isosceles orthogonality in Banach spaces
    Fu, Yuankang
    Xie, Huayou
    Li, Yongjin
    FILOMAT, 2023, 37 (17) : 5601 - 5622
  • [4] A generalization of frames in Banach spaces
    Kaushik, S. K.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2009, 44 (04): : 212 - 218
  • [5] A generalization of frames in Banach spaces
    S. K. Kaushik
    Journal of Contemporary Mathematical Analysis, 2009, 44 : 212 - 218
  • [6] ORTHOGONAL CONSTANT MAPPINGS IN ISOSCELES ORTHOGONAL SPACES
    Mirzavaziri, Madjid
    Moslehian, Mohammad Sal
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2006, 29 : 133 - 140
  • [7] On a Generalization of a Complementary Triangle Inequality in Hilbert Spaces and Banach Spaces
    Debmalya Sain
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 1815 - 1827
  • [8] On a Generalization of a Complementary Triangle Inequality in Hilbert Spaces and Banach Spaces
    Sain, Debmalya
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (04): : 1815 - 1827
  • [9] GENERALIZATION OF UNIFORMLY ROTUND BANACH-SPACES
    SULLIVAN, F
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1979, 31 (03): : 628 - 636
  • [10] The finite Jung constant in Banach spaces
    Castillo, Jesus M. F.
    Papini, Pier Luigi
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2024, 18 (02)