In this paper, we obtain some Hecke-type triple sums for the third-order mock theta function ω(q)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\omega (q)$$\end{document} and the fifth-order mock theta functions χ0(q)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\chi _0(q)$$\end{document}, χ1(q)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\chi _1(q)$$\end{document}. In addition, we extend this topic to the generating function of S∗(n)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S^{*}(n)$$\end{document} due to Andrews, Dyson, and Hickerson by investigating its new alternative representation.
机构:
Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R ChinaCent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R China
机构:
St Petersburg State Univ, Dept Math & Comp Sci, St Petersburg 199178, RussiaSt Petersburg State Univ, Dept Math & Comp Sci, St Petersburg 199178, Russia
Mortenson, Eric T.
Sahu, Ankit
论文数: 0引用数: 0
h-index: 0
机构:
St Petersburg State Univ, Dept Math & Comp Sci, St Petersburg 199178, RussiaSt Petersburg State Univ, Dept Math & Comp Sci, St Petersburg 199178, Russia