Some properties of anisotropic Sobolev spaces

被引:0
|
作者
P. Secchi
机构
[1] Dipartimento di Matematica,
[2] Ingegneria,undefined
[3] Università di Brescia,undefined
[4] Via Valotti 9,undefined
[5] 25133 Brescia,undefined
[6] Italy,undefined
来源
Archiv der Mathematik | 2000年 / 75卷
关键词
Boundary Condition; Sobolev Space; Function Space; Hyperbolic System; Wall Boundary;
D O I
暂无
中图分类号
学科分类号
摘要
In the theory of mixed problems for symmetric hyperbolic systems under characteristic boundary conditions, and in particular the equations of ideal Magneto-hydrodynamics with perfectly conducting wall boundary condition, the natural functional setting is provided by the anisotropic Sobolev spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $H^m_\ast (\Omega ),\; H^m_{\ast \ast }(\Omega )$\end{document}. In the present paper we show some properties of such function spaces which provide basic tools for calculations.
引用
收藏
页码:207 / 216
页数:9
相关论文
共 50 条