Mechanical properties of wire and arc additively manufactured high-strength steel structures

被引:0
|
作者
Johanna Müller
Jonas Hensel
Klaus Dilger
机构
[1] TU Braunschweig,Institute of Joining and Welding
来源
Welding in the World | 2022年 / 66卷
关键词
WAAM; High strength steel; Thermal cycle; Mechanical properties; Interpass temperature; Energy input; Active cooling; DED-arc; Direct energy deposition;
D O I
暂无
中图分类号
学科分类号
摘要
Additive manufacturing with steel opens up new possibilities for the construction sector. Especially direct energy deposition processes like DED-arc, also known as wire arc additive manufacturing (WAAM), is capable of manufacturing large structures with a high degree of geometric freedom, which makes the process suitable for the manufacturing of force flow-optimized steel nodes and spaceframes. By the use of high strength steel, the manufacturing times can be reduced since less material needs to be deposited. To keep the advantages of the high strength steel, the effect of thermal cycling during WAAM needs to be understood, since it influences the phase transformation, the resulting microstructure, and hence the mechanical properties of the material. In this study, the influences of energy input, interpass temperature, and cooling rate were investigated by welding thin walled samples. From each sample, microsections were analyzed, and tensile test and Charpy-V specimens were extracted and tested. The specimens with an interpass temperature of 200 °C, low energy input and applied active cooling showed a tensile strength of ~ 860–900 MPa, a yield strength of 700–780 MPa, and an elongation at fracture between 17 and 22%. The results showed the formation of martensite for specimens with high interpass temperatures which led to low yield and high tensile strengths (Rp0.2 = 520–590 MPa, Rm = 780–940 MPa) for the specimens without active cooling. At low interpass temperatures, the increase of the energy input led to a decrease of the tensile and the yield strength while the elongation at fracture as well as the Charpy impact energy increased. The formation of upper bainite due to the higher energy input can be avoided by accelerated cooling while martensite caused by high interpass temperatures need to be counteracted by heat treatment.
引用
收藏
页码:395 / 407
页数:12
相关论文
共 50 条
  • [21] Microstructure and mechanical properties of high-strength low alloy steel by wire and arc additive manufacturing
    Yi-li Dai
    Sheng-fu Yu
    An-guo Huang
    Yu-sheng Shi
    International Journal of Minerals, Metallurgy and Materials, 2020, 27 : 933 - 942
  • [22] Microstructure and mechanical properties of high-strength low alloy steel by wire and arc additive manufacturing
    Yi-li Dai
    Sheng-fu Yu
    An-guo Huang
    Yu-sheng Shi
    InternationalJournalofMineralsMetallurgyandMaterials, 2020, 27 (07) : 933 - 942
  • [23] Mechanical properties of wire arc additively manufactured steels at polar temperatures
    Huang, Cheng
    Hadjipantelis, Nicolas
    Quan, Sangchu
    Chen, Tao
    Gardner, Leroy
    STRUCTURES, 2024, 70
  • [24] Deposition Strategy on Microstructure Development and Mechanical Properties of Wire Arc Additively Manufactured Austenitic Stainless Steel
    Kishor, Gaurav
    Mugada, Krishna Kishore
    Mahto, Raju Prasad
    Badheka, Vishvesh
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024,
  • [25] Controlling microstructure and mechanical properties of additively manufactured high-strength steels by tailored solidification
    Koehnen, Patrick
    Ewald, Simon
    Schleifenbaum, Johannes Henrich
    Belyakov, Andrey
    Haase, Christian
    ADDITIVE MANUFACTURING, 2020, 35
  • [26] Wire and Arc Additive Manufacturing of High-Strength Low-Alloy Steel: Microstructure and Mechanical Properties
    Duarte, Valdemar R.
    Rodrigues, Tiago A.
    Schell, Norbert
    Santos, Telmo G.
    Oliveira, Joao P.
    Miranda, Rosa M.
    ADVANCED ENGINEERING MATERIALS, 2021, 23 (11)
  • [27] Microstructure and Mechanical Properties of Wire Arc Additively Manufactured Bimetallic Structure of Austenitic Stainless Steel and Low Carbon Steel
    Raut, Laukik P.
    Taiwade, Ravindra, V
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2022, 31 (10) : 8531 - 8541
  • [28] Microstructure and Mechanical Properties of Wire Arc Additively Manufactured Bimetallic Structure of Austenitic Stainless Steel and Low Carbon Steel
    Laukik P. Raut
    Ravindra V. Taiwade
    Journal of Materials Engineering and Performance, 2022, 31 : 8531 - 8541
  • [29] Effect of deposition strategies on mechanical strength of wire arc additively manufactured Inconel 625
    Rajput, Gautam Singh
    Gor, Meet
    Soni, Harsh
    Badheka, Vishvesh
    Sahlot, Pankaj
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 7324 - 7328
  • [30] Effect of deposition strategies on mechanical strength of wire arc additively manufactured Inconel 625
    Rajput, Gautam Singh
    Gor, Meet
    Soni, Harsh
    Badheka, Vishvesh
    Sahlot, Pankaj
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 (P13) : 7324 - 7328