How ice grows from premelting films and water droplets

被引:0
|
作者
David N. Sibley
Pablo Llombart
Eva G. Noya
Andrew J. Archer
Luis G. MacDowell
机构
[1] Loughborough University,Department of Mathematical Sciences
[2] Instituto de Química Física Rocasolano,Departamento de Química Física (Unidad de I+D+i Asociada al CSIC)
[3] CSIC,undefined
[4] Facultad de Ciencias Químicas,undefined
[5] Universidad Complutense de Madrid,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Close to the triple point, the surface of ice is covered by a thin liquid layer (so-called quasi-liquid layer) which crucially impacts growth and melting rates. Experimental probes cannot observe the growth processes below this layer, and classical models of growth by vapor deposition do not account for the formation of premelting films. Here, we develop a mesoscopic model of liquid-film mediated ice growth, and identify the various resulting growth regimes. At low saturation, freezing proceeds by terrace spreading, but the motion of the buried solid is conveyed through the liquid to the outer liquid–vapor interface. At higher saturations water droplets condense, a large crater forms below, and freezing proceeds undetectably beneath the droplet. Our approach is a general framework that naturally models freezing close to three phase coexistence and provides a first principle theory of ice growth and melting which may prove useful in the geosciences.
引用
收藏
相关论文
共 50 条
  • [41] DISCRETE PROPERTIES OF QUASILIQUID WATER FILM IN THE ICE PREMELTING RANGE. 1. TEMPERATURE DEPENDENCES OF WATER NANOFILM THICKNESS AND VISCOELASTIC PROPERTIES OF POLYCRYSTALLINE ICE
    Kornienko, M. E.
    Sheiko, N. L.
    Kornienko, O. M.
    Nikolaienko, T. Yu.
    UKRAINIAN JOURNAL OF PHYSICS, 2013, 58 (02): : 151 - 162
  • [42] Electricity from water droplets
    Burke, Maria
    CHEMISTRY & INDUSTRY, 2014, 78 (08) : 8 - 8
  • [43] Dissociation of H2O2 on water surfaces (ice and water droplets)
    Kumar, Amit
    Kumar, Pradeep
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (15) : 11331 - 11339
  • [44] Self-Consistent Determination of the Ice-Air Interfacial Tension and Ice-Water-Air Line Tension from Experiments on the Freezing of Water Droplets
    Djikaev, Y. S.
    Ruckenstein, E.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (30): : 16432 - 16439
  • [45] HETEROGENEOUS NUCLEATION OF ICE BY AGI IN WATER DROPLETS DISPERSED WITHIN EMULSIONS
    AGUERD, M
    CLAUSSE, D
    BABIN, L
    CRYO-LETTERS, 1982, 3 (03) : 164 - 172
  • [46] Random distribution active site model for ice nucleation in water droplets
    Kubota, Noriaki
    CRYSTENGCOMM, 2019, 21 (25): : 3810 - 3821
  • [47] Experimental investigation of the successive freezing processes of water droplets on an ice surface
    Jin, Zheyan
    Cheng, Xueying
    Yang, Zhigang
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 107 : 906 - 915
  • [48] Ice growth and interface oscillation of water droplets impinged on a cooling surface
    Hagiwara, Yoshimichi
    Ishikawa, Shoji
    Kimura, Ryota
    Toyohara, Kazumasa
    JOURNAL OF CRYSTAL GROWTH, 2017, 468 : 46 - 53
  • [49] A technique for quantifying heterogeneous ice nucleation in microlitre supercooled water droplets
    Whale, T. F.
    Murray, B. J.
    O'Sullivan, D.
    Wilson, T. W.
    Umo, N. S.
    Baustian, K. J.
    Atkinson, J. D.
    Workneh, D. A.
    Morris, G. J.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2015, 8 (06) : 2437 - 2447
  • [50] Scattering of partially coherent electromagnetic beams by water droplets and ice crystals
    Liu, Jianping
    Bi, Lei
    Yang, Ping
    Kattawar, George W.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2014, 134 : 74 - 84