Normal Forms of Planar Polynomial Differential Systems

被引:0
|
作者
Abderrahmane Turqui
Dahira Dali
机构
[1] University of Sciences and Technology Houari Boumediene,Faculty of Mathematics
来源
Qualitative Theory of Dynamical Systems | 2019年 / 18卷
关键词
Polynomial differential system; Invariant; Linear transformation; Normal form; 34C20; 14L36; 34G14; 15A72;
D O I
暂无
中图分类号
学科分类号
摘要
Using the invariant theory, we develop an algorithmic method, which is based on the construction of a matrix of linear transformation, to compute normal forms of planar polynomial differential systems. We illustrate our method in the case where the planar polynomial differential system is cubic.
引用
收藏
页码:11 / 33
页数:22
相关论文
共 50 条
  • [31] CENTER CONDITIONS FOR A CLASS OF PLANAR RIGID POLYNOMIAL DIFFERENTIAL SYSTEMS
    Llibre, Jaume
    Rabanal, Roland
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (03) : 1075 - 1090
  • [32] Normal forms for almost periodic differential systems
    Li, Weigu
    Llibre, Jaume
    Wu, Hao
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 : 637 - 656
  • [33] Polynomial and linearized normal forms for almost periodic difference systems
    Li, Weigu
    Llibre, Jaume
    Wu, Hao
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2009, 15 (10) : 927 - 948
  • [34] Normal forms of polynomial differential systems in R3 having at least three invariant algebraic surfaces
    Khajoei, Najmeh
    Molaei, Mohammad Reza
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (02) : 1023 - 1035
  • [35] On the Singularities of the Planar Cubic Polynomial Differential Systems and the Euler Jacobi Formula
    Jaume Llibre
    Claudia Valls
    Qualitative Theory of Dynamical Systems, 2020, 19
  • [36] CONFIGURATION OF PLANAR KOLMOGOROV CUBIC POLYNOMIAL DIFFERENTIAL SYSTEMS WITH THE MOST CENTERS
    He, Hongjin
    Liu, Changjian
    Xiao, Dongmei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (03): : 1549 - 1566
  • [37] Classical Planar Algebraic Curves Realizable by Quadratic Polynomial Differential Systems
    Garcia, Isaac A.
    Llibre, Jaume
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (09):
  • [38] CENTER OF PLANAR QUINTIC QUASI-OMOGENEOUS POLYNOMIAL DIFFERENTIAL SYSTEMS
    Tang, Yilei
    Wang, Long
    Zhang, Xiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (05) : 2177 - 2191
  • [39] Darboux invariants for planar polynomial differential systems having an invariant conic
    Jaume Llibre
    Marcelo Messias
    Alisson C. Reinol
    Zeitschrift für angewandte Mathematik und Physik, 2014, 65 : 1127 - 1136
  • [40] ON THE CONFIGURATIONS OF CENTERS OF PLANAR HAMILTONIAN KOLMOGOROV CUBIC POLYNOMIAL DIFFERENTIAL SYSTEMS
    Llibre, Jaume
    Xiao, Dongmei
    PACIFIC JOURNAL OF MATHEMATICS, 2020, 306 (02) : 611 - 644