Joint matricial range and joint congruence matricial range of operators

被引:0
|
作者
Pan-Shun Lau
Chi-Kwong Li
Yiu-Tung Poon
Nung-Sing Sze
机构
[1] University of Nevada,Department of Mathematics and Statistics
[2] College of William & Mary,Department of Mathematics
[3] Iowa State University,Department of Mathematics
[4] Peng Cheng Laboratory,Center for Quantum Computing
[5] The Hong Kong Polytechnic University,Department of Applied Mathematics
来源
关键词
Congruence numerical range; Star-shaped; Convex; Compact perturbation; 15A60; 47A20; 47A55;
D O I
暂无
中图分类号
学科分类号
摘要
Let A=(A1,…,Am)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{A}= (A_1, \ldots , A_m)$$\end{document}, where A1,…,Am\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_1, \ldots , A_m$$\end{document} are n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} real matrices. The real joint (p, q)-matricial range of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{A}$$\end{document}, Λp,qR(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varLambda }^{{\mathbb {R}}}_{p,q}(\mathbf{A})$$\end{document}, is the set of m-tuple of q×q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\times q$$\end{document} real matrices (B1,…,Bm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(B_1, \ldots , B_m)$$\end{document} such that (X∗A1X,…,X∗AmX)=(Ip⊗B1,…,Ip⊗Bm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X^*A_1X, \ldots , X^*A_mX) = (I_p\otimes B_1, \ldots , I_p \otimes B_m)$$\end{document} for some real n×pq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \times pq$$\end{document} matrix X satisfying X∗X=Ipq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^*X = I_{pq}$$\end{document}. It is shown that if n is sufficiently large, then the set Λp,qR(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varLambda }^{{\mathbb {R}}}_{p,q}(\mathbf{A})$$\end{document} is non-empty and star-shaped. The result is extended to bounded linear operators acting on a real Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {H}}}}$$\end{document}, and used to show that the joint essential (p, q)-matricial range of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{A}$$\end{document} is always compact, convex, and non-empty. Similar results for the joint congruence matricial ranges on complex operators are also obtained.
引用
收藏
页码:609 / 626
页数:17
相关论文
共 50 条
  • [31] RANGE OF HIP-JOINT MOVEMENT
    MILCH, H
    LANCET, 1964, 2 (734): : 42 - &
  • [32] The Influence of Menthol on Joint Range of Motion
    Staffiere, William
    Gillis, Jason
    Varnell, Michelle
    Gallo, Joseph
    Silva, Kevin
    Moriarty, Jacob
    MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2019, 51 (06): : 51 - 51
  • [33] Functional range of motion of the hip joint
    Adam, P.
    Beguin, L.
    Grosclaude, S.
    Jobard, B.
    Fessy, M. -H.
    REVUE DE CHIRURGIE ORTHOPEDIQUE ET REPARATRICE DE L APPAREIL MOTEUR, 2008, 94 (04): : 382 - 391
  • [34] The range of axial rotation of the glenohumeral joint
    Southgate, Dominic F. L.
    Hill, Adam M.
    Alexander, Susan
    Wallace, Andrew L.
    Hansen, Ulrich N.
    Bull, Anthony M. J.
    JOURNAL OF BIOMECHANICS, 2009, 42 (09) : 1307 - 1312
  • [35] TENSOR PRODUCTS AND JOINT NUMERICAL RANGE
    DASH, AT
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 40 (02) : 521 - 526
  • [36] Computing the Joint Range of a Set of Expectations
    Geyer, Charles J.
    Lazar, Radu C.
    Meeden, Glen D.
    ISIPTA 05-PROCEEDINGS OF THE FOURTH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITIES AND THEIR APPLICATIONS, 2005, : 165 - 172
  • [37] The joint essential maximal numerical range
    El-Adawy, TM
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 148 (03) : 793 - 799
  • [38] Joint Range of f-divergences
    Harremoes, Peter
    Vajda, Igor
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 1345 - 1349
  • [39] RANGE OF APPLICATIONS FOR CT JOINT DIAGNOSTICS
    HULS, A
    WALTER, E
    SUSS, C
    DEUTSCHE ZAHNARZTLICHE ZEITSCHRIFT, 1984, 39 (12): : 933 - 938
  • [40] A note on the boundary of the joint numerical range
    Chan, Jor-Ting
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (04): : 821 - 826