Full cell mathematical models of air cathode microbial fuel cells

被引:0
|
作者
Wei Yang
Min Du
Hongtao Liu
Jingjing Bao
Jiguo Tang
Jun Li
机构
[1] Sichuan University,State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower
[2] Tsinghua University,Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education
[3] Chongqing University,Key Laboratory of Low
来源
Experimental and Computational Multiphase Flow | 2023年 / 5卷
关键词
microbial fuel cell (MFC); model; electrode; kinetics; mass transfer;
D O I
暂无
中图分类号
学科分类号
摘要
Microbial fuel cells (MFCs) as a renewable energy conversion technology have been attracting increasing attention in the past decades. However, a deeper understanding of bioelectrochemical reaction in electrodes is urgent to improve the cell performance towards practical applications. In this paper, a mathematical model of air cathode MFCs was proposed by coupling mass transport and charge conservation with bioelectrochemical/electrochemical reactions. The model was validated based on experimental results and further used to predict the performance of MFCs. The effect of mass transport including oxygen and substrate on electrode kinetics was studied based on the model. The results showed that enhancing mass transport in both anode and cathode remarkably facilitated the electrode current and hence the cell performance, and oxygen transfer in catalyst layer of cathode is the dominating factor limiting the cell performance. The proposed model can provide a facile avenue to capture the interdependence of electrode variables and help guide electrode design for optimizing the performance of MFCs in practical applications.
引用
收藏
页码:111 / 121
页数:10
相关论文
共 50 条
  • [21] Cathode Denitrification of Microbial Fuel Cells
    Zhang, Rui
    Wu, Yun
    Wang, Lutian
    Wu, Qiang
    Zhang, Hongwei
    PROGRESS IN CHEMISTRY, 2020, 32 (12) : 2013 - 2021
  • [22] Brewery wastewater treatment using air-cathode microbial fuel cells
    Feng, Yujie
    Wang, Xin
    Logan, Bruce E.
    Lee, He
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2008, 78 (05) : 873 - 880
  • [23] Bioelectrogeneic performance of air-cathode microbial fuel cells with diesel contaminants
    Zafar, Zargona
    Naz, Sarwat
    Malik, Noshaba Hassan
    Ahmed, Fayyaz
    Ali, Naeem
    FUEL, 2024, 355
  • [24] Accelerated tests for evaluating the air-cathode aging in microbial fuel cells
    Gao, Ningshengjie
    Fan, Yanzhen
    Wang, Luguang
    Long, Fei
    Deng, Dezhong
    Liu, Hong
    BIORESOURCE TECHNOLOGY, 2020, 297
  • [25] Effect of nitrate on the performance of single chamber air cathode microbial fuel cells
    Sukkasem, Chontisa
    Xu, Shoutao
    Park, Sunhwa
    Boonsawang, Piyarat
    Liu, Hong
    WATER RESEARCH, 2008, 42 (19) : 4743 - 4750
  • [26] Brewery wastewater treatment using air-cathode microbial fuel cells
    Yujie Feng
    Xin Wang
    Bruce E. Logan
    He Lee
    Applied Microbiology and Biotechnology, 2008, 78 : 873 - 880
  • [27] A BRIEF REVIEW ON RECENT ADVANCES IN AIR-CATHODE MICROBIAL FUEL CELLS
    Chatterjee, Pritha
    Ghangrekar, Makarand Madhao
    Leech, Donal
    ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL, 2018, 17 (07): : 1531 - 1544
  • [28] Enhancing the Performance of Microbial Fuel Cells by Installing an Air Pump to the Cathode Chamber
    Moustafa, E.
    Abdelsalam, E.
    Attia, Y. A.
    Mohamed, M. S. M.
    Salah, M.
    Moselhy, M. A.
    Ali, A. S.
    Samer, M.
    EGYPTIAN JOURNAL OF CHEMISTRY, 2021, 64 (10): : 5470 - 5476
  • [29] Development of novel polyethylene air-cathode material for microbial fuel cells
    Gao, Ningshengjie
    Qu, Botong
    Xing, Zhenyu
    Ji, Xiulei
    Zhang, Eugene
    Liu, Hong
    ENERGY, 2018, 155 : 763 - 771
  • [30] Research on air-cathode of anaerobic fluidized bed microbial fuel cell
    Yue, Xuehai
    Kong, Weifang
    Wang, Xuyun
    Guo, Qingjie
    Huagong Xuebao/CIESC Journal, 2013, 64 (01): : 352 - 356