Uncertainty representation of ocean fronts based on fuzzy-rough set theory

被引:2
|
作者
Xue C. [1 ,2 ]
Zhou C. [1 ]
Su F. [1 ]
Zhang D. [1 ,2 ]
机构
[1] The Marine GIS's Center, State Key Laboratory of Resources and Environment Information System, Chinese Academy of Sciences
[2] Graduate School, Chinese Academy of Sciences
基金
中国国家自然科学基金;
关键词
Fuzzy-rough set; Lower approximate sets; Ocean fronts; Uncertainties; Upper approximate sets;
D O I
10.1007/s11802-008-0131-0
中图分类号
学科分类号
摘要
Analysis of ocean fronts' uncertainties indicates that they result from indiscernibility of their spatial position and fuzziness of their intensity. In view of this, a flow hierarchy for uncertainty representation of ocean fronts is proposed on the basis of fuzzy-rough set theory. Firstly, raster scanning and blurring are carried out on an ocean front, and the upper and lower approximate sets, the indiscernible relation in fuzzy-rough theories and related operators in fuzzy set theories are adopted to represent its uncertainties, then they are classified into three sets: with members one hundred percent belonging to the ocean front, belonging to the ocean front's edge and definitely not belonging to the ocean front. Finally, the approximate precision and roughness degree are utilized to evaluate the ocean front's degree of uncertainties and the precision of the representation. It has been proven that the method is not only capable of representing ocean fronts' uncertainties, but also provides a new theory and method for uncertainty representation of other oceanic phenomena. © Science Press, Ocean University of China and Springer-Verlag GmbH 2008.
引用
收藏
页码:131 / 136
页数:5
相关论文
共 50 条
  • [31] A rough set paradigm for unifying rough set theory and fuzzy set theory
    Polkowski, L
    ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING, 2003, 2639 : 70 - 77
  • [32] Representation Theorem of Fuzzy Rough Set
    舒兰
    赵磊
    Journal of Electronic Science and Technology of China, 2004, (04) : 76 - 78
  • [33] Rough mereology: A rough set paradigm for unifying rough set theory and fuzzy set theory
    Polkowski, L
    FUNDAMENTA INFORMATICAE, 2003, 54 (01) : 67 - 88
  • [34] Rule Reduction in Air Combat Belief Rule Base Based on Fuzzy-rough Set
    Wu, Baibing
    Huang, Jian
    Gao, Wanying
    Kong, Jiangtao
    2016 3RD INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE), 2016, : 593 - 596
  • [35] Note on "Tolerance-based intuitionistic fuzzy-rough set approach for attribute reduction"
    Rehman, Noor
    Ali, Abbas
    Hila, Kostaq
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 175
  • [36] Third Order Backward Elimination Approach for Fuzzy-Rough Set Based Feature Selection
    Ghosh, Soumen
    Prasad, P. S. V. S. Sai
    Rao, C. Raghavendra
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2017, 2017, 10597 : 254 - 262
  • [37] Boosting Based Fuzzy-Rough Pattern Classifier
    Vadakkepat, Prahlad
    Pramod, Kumar P.
    Ganesan, Sivakumar
    Poh, Loh Ai
    TRENDS IN INTELLIGENT ROBOTICS, 2010, 103 : 306 - 313
  • [38] Using Fuzzy-Rough Set Feature Selection for Feature Construction based on Genetic Programming
    Mahanipour, Afsaneh
    Nezamabadi-pour, Hossein
    Nikpour, Bahareh
    2018 3RD CONFERENCE ON SWARM INTELLIGENCE AND EVOLUTIONARY COMPUTATION (CSIEC2018), VOL 3, 2018, : 58 - 63
  • [39] An integrated fuzzy-rough set model for identification of tea leaf diseases
    Krishnan, Jayapal Santhana
    Sivakumar, Poruran
    PAKISTAN JOURNAL OF AGRICULTURAL SCIENCES, 2022, 59 (06): : 947 - 952
  • [40] Upper Nearness Degree and Lower Nearness Degree of Fuzzy-Rough Set
    Wang Biao
    Gao Guanglai
    KAM: 2008 INTERNATIONAL SYMPOSIUM ON KNOWLEDGE ACQUISITION AND MODELING, PROCEEDINGS, 2008, : 54 - 58