This paper is concerned with a Delsarte-type extremal problem. Denote by P(G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {P}}(G)$$\end{document} the set of positive definite continuous functions on a locally compact abelian group G. We consider the function class, which was originally introduced by Gorbachev, G(W,Q)G=f∈P(G)∩L1(G):f(0)=1,suppf+⊆W,suppf^⊆Q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned}&{\mathcal {G}}(W, Q)_G = \left\{ f \in {\mathcal {P}}(G) \cap L^1(G)~:\right. \\&\qquad \qquad \qquad \qquad \qquad \left. f(0) = 1, ~ {\text {supp}}{f_+} \subseteq W,~ {\text {supp}}{\widehat{f}} \subseteq Q \right\} \end{aligned}$$\end{document}where W⊆G\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$W\subseteq G$$\end{document} is closed and of finite Haar measure and Q⊆G^\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q\subseteq {\widehat{G}}$$\end{document} is compact. We also consider the related Delsarte-type problem of finding the extremal quantity D(W,Q)G=sup∫Gf(g)dλG(g):f∈G(W,Q)G.\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} {\mathcal {D}}(W,Q)_G = \sup \left\{ \int _{G} f(g) \mathrm{d}\lambda _G(g) ~ : ~ f \in {\mathcal {G}}(W,Q)_G\right\} . \end{aligned}$$\end{document}The main objective of the current paper is to prove the existence of an extremal function for the Delsarte-type extremal problem D(W,Q)G\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {D}}(W,Q)_G$$\end{document}. The existence of the extremal function has recently been established by Berdysheva and Révész in the most immediate case where G=Rd\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G={\mathbb {R}}^d$$\end{document}. So, the novelty here is that we consider the problem in the general setting of locally compact abelian groups. In this way, our result provides a far reaching generalization of the former work of Berdysheva and Révész.