On the Existence of an Extremal Function in the Delsarte Extremal Problem

被引:0
|
作者
Marcell Gaál
Zsuzsanna Nagy-Csiha
机构
[1] Rényi Institute of Mathematics,Department of Numerical Analysis, Faculty of Informatics
[2] Hungarian Academy of Sciences,Institute of Mathematics and Informatics Faculty of Sciences
[3] Eötvös Loránd University,undefined
[4] University of Pécs,undefined
来源
关键词
LCA groups; fourier transform; positive definite functions; Delsarte’s extremal problem; Primary 43A35; 43A40; Secondary 43A25; 43A70;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with a Delsarte-type extremal problem. Denote by P(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}(G)$$\end{document} the set of positive definite continuous functions on a locally compact abelian group G. We consider the function class, which was originally introduced by Gorbachev, G(W,Q)G=f∈P(G)∩L1(G):f(0)=1,suppf+⊆W,suppf^⊆Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}&{\mathcal {G}}(W, Q)_G = \left\{ f \in {\mathcal {P}}(G) \cap L^1(G)~:\right. \\&\qquad \qquad \qquad \qquad \qquad \left. f(0) = 1, ~ {\text {supp}}{f_+} \subseteq W,~ {\text {supp}}{\widehat{f}} \subseteq Q \right\} \end{aligned}$$\end{document}where W⊆G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W\subseteq G$$\end{document} is closed and of finite Haar measure and Q⊆G^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q\subseteq {\widehat{G}}$$\end{document} is compact. We also consider the related Delsarte-type problem of finding the extremal quantity D(W,Q)G=sup∫Gf(g)dλG(g):f∈G(W,Q)G.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathcal {D}}(W,Q)_G = \sup \left\{ \int _{G} f(g) \mathrm{d}\lambda _G(g) ~ : ~ f \in {\mathcal {G}}(W,Q)_G\right\} . \end{aligned}$$\end{document}The main objective of the current paper is to prove the existence of an extremal function for the Delsarte-type extremal problem D(W,Q)G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}(W,Q)_G$$\end{document}. The existence of the extremal function has recently been established by Berdysheva and Révész in the most immediate case where G=Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G={\mathbb {R}}^d$$\end{document}. So, the novelty here is that we consider the problem in the general setting of locally compact abelian groups. In this way, our result provides a far reaching generalization of the former work of Berdysheva and Révész.
引用
收藏
相关论文
共 50 条