The infinite topology of the hyperelliptic locus in Torelli space

被引:0
|
作者
Kevin Kordek
机构
[1] Texas A&M University,Department of Mathematics
来源
Geometriae Dedicata | 2017年 / 187卷
关键词
Mapping class groups; Torelli groups; Torelli spaces; Moduli of curves; 32Q55; 32G15; 14H55;
D O I
暂无
中图分类号
学科分类号
摘要
Genus g Torelli space is the moduli space of genus g curves of compact type equipped with a homology framing. The hyperelliptic locus is a closed analytic subvariety consisting of finitely many mutually isomorphic components. We use properties of the hyperelliptic Torelli group to show that when g≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\ge 3$$\end{document} these components do not have the homotopy type of a finite CW complex. Specifically, we show that the second rational homology of each component is infinite-dimensional. We give a more detailed description of the topological features of these components when g=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g=3$$\end{document} using properties of genus 3 theta functions.
引用
收藏
页码:89 / 105
页数:16
相关论文
共 50 条