The infinite topology of the hyperelliptic locus in Torelli space

被引:0
|
作者
Kevin Kordek
机构
[1] Texas A&M University,Department of Mathematics
来源
Geometriae Dedicata | 2017年 / 187卷
关键词
Mapping class groups; Torelli groups; Torelli spaces; Moduli of curves; 32Q55; 32G15; 14H55;
D O I
暂无
中图分类号
学科分类号
摘要
Genus g Torelli space is the moduli space of genus g curves of compact type equipped with a homology framing. The hyperelliptic locus is a closed analytic subvariety consisting of finitely many mutually isomorphic components. We use properties of the hyperelliptic Torelli group to show that when g≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\ge 3$$\end{document} these components do not have the homotopy type of a finite CW complex. Specifically, we show that the second rational homology of each component is infinite-dimensional. We give a more detailed description of the topological features of these components when g=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g=3$$\end{document} using properties of genus 3 theta functions.
引用
收藏
页码:89 / 105
页数:16
相关论文
共 50 条
  • [1] The infinite topology of the hyperelliptic locus in Torelli space
    Kordek, Kevin
    GEOMETRIAE DEDICATA, 2017, 187 (01) : 89 - 105
  • [2] The Oort conjecture on Shimura curves in the Torelli locus of hyperelliptic curves
    Lu, Xin
    Zuo, Kang
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 108 (04): : 532 - 552
  • [3] Cohomology of the hyperelliptic Torelli group
    Brendle, Tara
    Childers, Leah
    Margalit, Dan
    ISRAEL JOURNAL OF MATHEMATICS, 2013, 195 (02) : 613 - 630
  • [4] Factoring in the hyperelliptic Torelli group
    Brendle, Tara E.
    Margalit, Dan
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2015, 159 (02) : 207 - 217
  • [5] Cohomology of the hyperelliptic Torelli group
    Tara Brendle
    Leah Childers
    Dan Margalit
    Israel Journal of Mathematics, 2013, 195 : 613 - 630
  • [6] Computing the topology of a plane or space hyperelliptic curve
    Gerardo Alcazar, Juan
    Caravantes, Jorge
    Diaz-Toca, Gema M.
    Tsigaridas, Elias
    COMPUTER AIDED GEOMETRIC DESIGN, 2020, 78 (78)
  • [7] The automorphism group of the hyperelliptic Torelli group
    Childers, Leah R.
    NEW YORK JOURNAL OF MATHEMATICS, 2017, 23 : 671 - 697
  • [8] Torelli Locus and Rigidity
    Yeung, Sai-Kee
    MICHIGAN MATHEMATICAL JOURNAL, 2022, 72 : 643 - 654
  • [9] THE HYPERELLIPTIC LOCUS
    POOR, C
    DUKE MATHEMATICAL JOURNAL, 1994, 76 (03) : 809 - 884
  • [10] AN INFINITE PRESENTATION OF THE TORELLI GROUP
    Putman, Andrew
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 19 (02) : 591 - 643