Ceramic ChemCam Calibration Targets on Mars Science Laboratory

被引:0
|
作者
D. Vaniman
M. D. Dyar
R. Wiens
A. Ollila
N. Lanza
J. Lasue
J. M. Rhodes
S. Clegg
H. Newsom
机构
[1] Planetary Science Institute,Dept. of Astronomy
[2] Mount Holyoke College,Space Remote Sensing
[3] Los Alamos National Laboratory,Institute of Meteoritics
[4] University of New Mexico,Observatoire Midi
[5] Institut de Recherche en Astrophysique et Planétologie,Pyrénées
[6] University of Massachusetts,Dept. of Geosciences
[7] Los Alamos National Laboratory,Physical Chemistry and Applied Spectroscopy
来源
Space Science Reviews | 2012年 / 170卷
关键词
Mars Science Laboratory; ChemCam; Laser induced breakdown spectroscopy; Calibration; Gale Crater; Ceramic; Curiosity;
D O I
暂无
中图分类号
学科分类号
摘要
The ChemCam instrument on the Mars Science Laboratory rover Curiosity will use laser-induced breakdown spectroscopy (LIBS) to analyze major and minor element chemistry from sub-millimeter spot sizes, at ranges of ∼1.5–7 m. To interpret the emission spectra obtained, ten calibration standards will be carried on the rover deck. Graphite, Ti metal, and four glasses of igneous composition provide primary, homogeneous calibration targets for the laser. Four granular ceramic targets have been added to provide compositions closer to soils and sedimentary materials like those expected at the Gale Crater field site on Mars. Components used in making these ceramics include basalt, evaporite, and phyllosilicate materials that approximate the chemical compositions of detrital and authigenic constituents of clastic and evaporite sediments, including the elevated sulfate contents present in many Mars sediments and soils. Powdered components were sintered at low temperature (800 °C) with a small amount (9 wt.%) of lithium tetraborate flux to produce ceramics that retain volatile sulfur yet are durable enough for the mission. The ceramic targets are more heterogeneous than the pure element and homogenous glass standards but they provide standards with compositions more similar to the sedimentary rocks that will be Curiosity’s prime targets at Gale Crater.
引用
收藏
页码:229 / 255
页数:26
相关论文
共 50 条
  • [41] Mars Lander Engine Plume Impingement Environment of the Mars Science Laboratory
    Sengupta, Anita
    Kulleck, James
    Sell, Steve
    Van Norman, John
    Mehta, Manish
    Pokora, Mark
    2009 IEEE AEROSPACE CONFERENCE, VOLS 1-7, 2009, : 462 - +
  • [42] Mars Science Laboratory Observations of Chloride Salts in Gale Crater, Mars
    Thomas, N. H.
    Ehlmann, B. L.
    Meslin, P. -Y.
    Rapin, W.
    Anderson, D. E.
    Rivera-Hernandez, F.
    Forni, O.
    Schroeder, S.
    Cousin, A.
    Mangold, N.
    Gellert, R.
    Gasnault, O.
    Wiens, R. C.
    GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (19) : 10754 - 10763
  • [43] Mars Science Laboratory parachute simulation model
    Queen, EM
    Raiszadeh, B
    JOURNAL OF SPACECRAFT AND ROCKETS, 2006, 43 (02) : 374 - 377
  • [44] The Mars Science Laboratory scooping campaign at Rocknest
    Anderson, R. C.
    Beegle, L. W.
    Hurowitz, J.
    Hanson, C.
    Abbey, W.
    Seybold, C.
    Liminodi, D.
    Kuhn, S.
    Jandura, L.
    Brown, K.
    Peters, G.
    Roumeliotis, C.
    Robinson, M.
    Edgett, K.
    Minitti, M.
    Grotzinger, J.
    ICARUS, 2015, 256 : 66 - 77
  • [45] The Mars Science Laboratory Remote Sensing Mast
    Warner, Noah
    Silverman, Milo
    Samuels, Jessica
    DeFlores, Lauren
    Sengstacken, Aaron
    Maki, Justin
    Scodary, Anthony
    Peters, Stephen
    Litwin, Todd
    Metz, Brandon
    2016 IEEE AEROSPACE CONFERENCE, 2016,
  • [46] In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory
    Conrad, P. G.
    Malespin, C. A.
    Franz, H. B.
    Pepin, R. O.
    Trainer, M. G.
    Schwenzer, S. P.
    Atreya, S. K.
    Freissinet, C.
    Jones, J. H.
    Manning, H.
    Owen, T.
    Pavlov, A. A.
    Wiens, R. C.
    Wong, M. H.
    Mahaffy, P. R.
    EARTH AND PLANETARY SCIENCE LETTERS, 2016, 454 : 1 - 9
  • [47] Planetary Waves Traveling Between Mars Science Laboratory and Mars 2020
    Battalio, J. Michael
    Martinez, German
    Newman, Claire
    Juarez, Manuel de la Torre
    Sanchez-Lavega, Agustin
    Viudez-Moreiras, Daniel
    GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (21)
  • [48] Measurements of Energetic Particle Radiation in Transit to Mars on the Mars Science Laboratory
    Zeitlin, C.
    Hassler, D. M.
    Cucinotta, F. A.
    Ehresmann, B.
    Wimmer-Schweingruber, R. F.
    Brinza, D. E.
    Kang, S.
    Weigle, G.
    Boettcher, S.
    Boehm, E.
    Burmeister, S.
    Guo, J.
    Koehler, J.
    Martin, C.
    Posner, A.
    Rafkin, S.
    Reitz, G.
    SCIENCE, 2013, 340 (6136) : 1080 - 1084
  • [49] Selection of the Mars Science Laboratory Landing Site
    M. Golombek
    J. Grant
    D. Kipp
    A. Vasavada
    R. Kirk
    R. Fergason
    P. Bellutta
    F. Calef
    K. Larsen
    Y. Katayama
    A. Huertas
    R. Beyer
    A. Chen
    T. Parker
    B. Pollard
    S. Lee
    Y. Sun
    R. Hoover
    H. Sladek
    J. Grotzinger
    R. Welch
    E. Noe Dobrea
    J. Michalski
    M. Watkins
    Space Science Reviews, 2012, 170 : 641 - 737
  • [50] The Mars Science Laboratory Organic Check Material
    Conrad, Pamela G.
    Eigenbrode, Jennifer L.
    Von der Heydt, Max O.
    Mogensen, Claus T.
    Canham, John
    Harpold, Dan N.
    Johnson, Joel
    Errigo, Therese
    Glavin, Daniel P.
    Mahaffy, Paul R.
    SPACE SCIENCE REVIEWS, 2012, 170 (1-4) : 479 - 501