Cubic Graphs Admitting Vertex-Transitive Almost Simple Groups

被引:0
|
作者
Jia-Li Du
Fu-Gang Yin
Menglin Ding
机构
[1] Nanjing Normal University,School of Mathematical Science
[2] Central South University,School of Mathematics and Statistics
[3] Wucheng No. 2 Middle School,undefined
来源
Graphs and Combinatorics | 2023年 / 39卷
关键词
Vertex-transitive graph; Cubic graph, almost simple group; 05C25; 20B25;
D O I
暂无
中图分类号
学科分类号
摘要
Let Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varGamma }$$\end{document} be a connected cubic graph admitting a vertex-transitive almost simple group G of automorphisms. In this paper, we study the normality of the socle T of G in the full automorphism group Aut(Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Aut}({\varGamma })$$\end{document} of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varGamma } $$\end{document}. It is proved that if T is not normal in Aut(Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Aut}({\varGamma })$$\end{document}, then T=A47\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T= \text {A}_{47}$$\end{document}, A23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {A}_{23}$$\end{document}, A2f-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {A}_{2^f-1}$$\end{document} with f≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\ge 3$$\end{document}, or a simple group of Lie type of even characteristic with some exceptions. In particular, if Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varGamma }$$\end{document} is arc-transitive and T is not normal in Aut(Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Aut}({\varGamma })$$\end{document}, then Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varGamma } $$\end{document} is a Cayley graph on G, and (Aut(Γ),G)=(A48,A47)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\text {Aut}({\varGamma }),G)=(\text {A}_{48},\text {A}_{47})$$\end{document} or (S24,S23)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\text {S}_{24},\text {S}_{23})$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Finite transitive permutation groups and finite vertex-transitive graphs
    Praeger, CE
    GRAPH SYMMETRY: ALGEBRAIC METHODS AND APPLICATIONS, 1997, 497 : 277 - 318
  • [22] Cubic vertex-transitive graphs on up to 1280 vertices
    Potocnik, Primoz
    Spiga, Pablo
    Verret, Gabriel
    JOURNAL OF SYMBOLIC COMPUTATION, 2013, 50 : 465 - 477
  • [23] Finite transitive permutation groups and bipartite vertex-transitive graphs
    Praeger, CE
    ILLINOIS JOURNAL OF MATHEMATICS, 2003, 47 (1-2) : 461 - 475
  • [24] On Infinite, Cubic, Vertex-Transitive Graphs with Applications to Totally Disconnected, Locally Compact Groups
    Arnadottir, Arnbjorg Soffia
    Lederle, Waltraud
    Moller, Rognvaldur G.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (04):
  • [25] An infinite family of cubic edge- but not vertex-transitive graphs
    Malnic, A
    Marusic, D
    Potocnik, P
    Wang, CQ
    DISCRETE MATHEMATICS, 2004, 280 (1-3) : 133 - 148
  • [26] Cubic Vertex-Transitive Graphs of Order 2pq
    Zhou, Jin-Xin
    Feng, Yan-Quan
    JOURNAL OF GRAPH THEORY, 2010, 65 (04) : 285 - 302
  • [27] Vertex-Transitive Cubic Graphs of Square-Free Order
    Li, Cai Heng
    Lu, Zai Ping
    Wang, Gai Xia
    JOURNAL OF GRAPH THEORY, 2014, 75 (01) : 1 - 19
  • [28] VERTEX-TRANSITIVE GRAPHS AND ACCESSIBILITY
    THOMASSEN, C
    WOESS, W
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1993, 58 (02) : 248 - 268
  • [29] EXCESS IN VERTEX-TRANSITIVE GRAPHS
    BIGGS, NL
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1982, 14 (JAN) : 52 - 54
  • [30] Vertex-transitive graphs and digraphs
    Scapellato, R
    GRAPH SYMMETRY: ALGEBRAIC METHODS AND APPLICATIONS, 1997, 497 : 319 - 378