A Graph-based Semi-supervised Multi-label Learning Method Based on Label Correlation Consistency

被引:0
|
作者
Qin Zhang
Guoqiang Zhong
Junyu Dong
机构
[1] Qingdao Agricultural University,College of Science and Information
[2] Shandong Key Laboratory of Computer Networks,Department of Computer Science and Technology
[3] Ocean University of China,undefined
来源
Cognitive Computation | 2021年 / 13卷
关键词
Multi-label learning; Graph-based Semi-supervised Learning; Anchors; Label Correlation Consistency.;
D O I
暂无
中图分类号
学科分类号
摘要
Multi-label learning deals with the problem which each data example can be represented by an instance and associated with a set of labels, i.e., every example can be classified into multiple classes simultaneously. Most of the existing multi-label learning methods are supervised which cannot deal with such application scenarios where manually labeling the data is very expensive and time-consuming while the unlabeled data are very cheap and easy to obtain. This paper proposes an ensemble learning method which integrates multi-label learning and graph-based semi-supervised learning into one framework. The label correlation consistency is introduced to deal with the multi-label learning. The proposed method has been evaluated on five public multi-label datasets by comparing it with state-of-the-art supervised and semi-supervised multi-label methods according to multiple evaluation metrics to confirm its effectiveness. Experimental results show that the proposed method can achieve the comparable performance compared with the state-of-the-art methods. Furthermore, it is more confident on every single predicted label.
引用
收藏
页码:1564 / 1573
页数:9
相关论文
共 50 条
  • [31] Semi-supervised Multi-Label Learning with Missing Labels via Correlation Information
    Xie, Zexian
    Li, Peipei
    Jiang, Jinling
    Wu, Xindong
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [32] Semi-Supervised Multi-Label Dimensionality Reduction Learning by Instance and Label Correlations
    Li, Runxin
    Du, Jiaxing
    Ding, Jiaman
    Jia, Lianyin
    Chen, Yinong
    Shang, Zhenhong
    MATHEMATICS, 2023, 11 (03)
  • [33] Conditional Consistency Regularization for Semi-Supervised Multi-Label Image Classification
    Wu, Zhengning
    He, Tianyu
    Xia, Xiaobo
    Yu, Jun
    Shen, Xu
    Liu, Tongliang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 4206 - 4216
  • [34] Graph-based semi-supervised learning
    Zhang, Changshui
    Wang, Fei
    ARTIFICIAL LIFE AND ROBOTICS, 2009, 14 (04) : 445 - 448
  • [35] Graph-based semi-supervised learning
    Subramanya, Amarnag
    Talukdar, Partha Pratim
    Synthesis Lectures on Artificial Intelligence and Machine Learning, 2014, 29 : 1 - 126
  • [36] Graph-based semi-supervised learning
    Changshui Zhang
    Fei Wang
    Artificial Life and Robotics, 2009, 14 (4) : 445 - 448
  • [37] Semi-supervised imbalanced multi-label classification with label propagation
    Du, Guodong
    Zhang, Jia
    Zhang, Ning
    Wu, Hanrui
    Wu, Peiliang
    Li, Shaozi
    PATTERN RECOGNITION, 2024, 150
  • [38] Semi-Supervised Multi-Label Feature Selection by Preserving Feature-Label Space Consistency
    Xu, Yuanyuan
    Wang, Jun
    An, Shuai
    Wei, Jinmao
    Ruan, Jianhua
    CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2018, : 783 - 792
  • [39] Research on Multi-Label Semi-Supervised Learning Algorithm Based on Dual Selection Criteria
    Liu, Rongxin
    Lu, Yufang
    Shi, Lei
    Tan, Shuru
    IEEE ACCESS, 2024, 12 : 31357 - 31365
  • [40] Driving Style Classification Model Based on a Multi-label Semi-supervised Learning Algorithm
    Li M.
    Zhang Z.
    Song X.
    Cao H.
    Yi B.
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2020, 47 (04): : 10 - 15