One-Dimensional Parametric Determining form for the Two-Dimensional Navier–Stokes Equations

被引:0
|
作者
Ciprian Foias
Michael S. Jolly
Dan Lithio
Edriss S. Titi
机构
[1] Texas A&M University,Department of Mathematics
[2] Indiana University,Department of Mathematics
[3] Allstate,The Department of Computer Science and Applied Mathematics
[4] The Weizmann Institute of Science,undefined
来源
关键词
Navier–Stokes equations; Global attractors; Determining nodes; Determining form; Parametric determining form; Determining parameter; 35Q30; 76F02;
D O I
暂无
中图分类号
学科分类号
摘要
The evolution of a determining form for the 2D Navier–Stokes equations (NSE) which is an ODE on a space of trajectories is completely described. It is proved that at every stage of its evolution, the solution is a convex combination of the initial trajectory and a chosen, fixed steady state, with a dynamical convexity parameter θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}, which will be called the characteristic determining parameter. That is, we show a separation of variables formula for the solution of the determining form. Moreover, for a given initial trajectory, the dynamics of the infinite-dimensional determining form are equivalent to those of the characteristic determining parameter θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} which is governed by a one-dimensional ODE. This one-dimensional ODE is used to show that if the solution to the determining form converges to the fixed state it does so no faster than O(τ-1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(\tau ^{-1/2})$$\end{document}, otherwise it converges to a projection of some other trajectory in the global attractor of the NSE, but no faster than O(τ-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(\tau ^{-1})$$\end{document}, as τ→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \rightarrow \infty $$\end{document}, where τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} is the evolutionary variable in determining form. The one-dimensional ODE is also exploited in computations which suggest that the one-sided convergence rate estimates are in fact achieved. The ODE is then modified to accelerate the convergence to an exponential rate. It is shown that the zeros of the scalar function that governs the dynamics of θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}, which are called characteristic determining values, identify in a unique fashion the trajectories in the global attractor of the 2D NSE
引用
收藏
页码:1513 / 1529
页数:16
相关论文
共 50 条
  • [21] CAUCHY PROBLEM FOR THE ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Lian Ruxu
    Liu Jian
    Li Hailiang
    Xiao Ling
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (01) : 315 - 324
  • [22] Vacuum problem of one-dimensional compressible Navier-Stokes equations
    Li, H. -L.
    Li, J.
    Xin, Z.
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS: PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON HYPERBOLIC PROBLEMS, 2008, : 161 - 172
  • [23] CAUCHY PROBLEM FOR THE ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES EQUATIONS
    连汝续
    刘健
    李海梁
    肖玲
    ActaMathematicaScientia, 2012, 32 (01) : 315 - 324
  • [24] Partially congested propagation fronts in one-dimensional Navier–Stokes equations
    Anne-Laure Dalibard
    Charlotte Perrin
    Journal of Elliptic and Parabolic Equations, 2021, 7 : 491 - 507
  • [25] On the Numerical Controllability of the Two-Dimensional Heat, Stokes and Navier-Stokes Equations
    Fernandez-Cara, Enrique
    Munch, Arnaud
    Souza, Diego A.
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (02) : 819 - 858
  • [26] Homogenization of the two-dimensional evolutionary compressible Navier-Stokes equations
    Necasova, Sarka
    Oschmann, Florian
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (06)
  • [27] Maximum palinstrophy amplification in the two-dimensional Navier-Stokes equations
    Ayala, Diego
    Doering, Charles R.
    Simon, Thilo M.
    JOURNAL OF FLUID MECHANICS, 2018, 837 : 839 - 857
  • [28] Optimal control for two-dimensional stochastic Navier-Stokes equations
    Cutland, Nigel J.
    Grzesiak, Katarzyna
    APPLIED MATHEMATICS AND OPTIMIZATION, 2007, 55 (01): : 61 - 91
  • [29] On the two-dimensional Navier-Stokes equations with the free boundary condition
    Indiana Univ, Bloomington, United States
    Appl Math Optim, 1 (1-19):
  • [30] Pseudospectral solution of the two-dimensional Navier-Stokes equations in a disk
    Torres, DJ
    Coutsias, EA
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (01): : 378 - 403