One-Dimensional Parametric Determining form for the Two-Dimensional Navier–Stokes Equations

被引:0
|
作者
Ciprian Foias
Michael S. Jolly
Dan Lithio
Edriss S. Titi
机构
[1] Texas A&M University,Department of Mathematics
[2] Indiana University,Department of Mathematics
[3] Allstate,The Department of Computer Science and Applied Mathematics
[4] The Weizmann Institute of Science,undefined
来源
关键词
Navier–Stokes equations; Global attractors; Determining nodes; Determining form; Parametric determining form; Determining parameter; 35Q30; 76F02;
D O I
暂无
中图分类号
学科分类号
摘要
The evolution of a determining form for the 2D Navier–Stokes equations (NSE) which is an ODE on a space of trajectories is completely described. It is proved that at every stage of its evolution, the solution is a convex combination of the initial trajectory and a chosen, fixed steady state, with a dynamical convexity parameter θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}, which will be called the characteristic determining parameter. That is, we show a separation of variables formula for the solution of the determining form. Moreover, for a given initial trajectory, the dynamics of the infinite-dimensional determining form are equivalent to those of the characteristic determining parameter θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} which is governed by a one-dimensional ODE. This one-dimensional ODE is used to show that if the solution to the determining form converges to the fixed state it does so no faster than O(τ-1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(\tau ^{-1/2})$$\end{document}, otherwise it converges to a projection of some other trajectory in the global attractor of the NSE, but no faster than O(τ-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(\tau ^{-1})$$\end{document}, as τ→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \rightarrow \infty $$\end{document}, where τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} is the evolutionary variable in determining form. The one-dimensional ODE is also exploited in computations which suggest that the one-sided convergence rate estimates are in fact achieved. The ODE is then modified to accelerate the convergence to an exponential rate. It is shown that the zeros of the scalar function that governs the dynamics of θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}, which are called characteristic determining values, identify in a unique fashion the trajectories in the global attractor of the 2D NSE
引用
收藏
页码:1513 / 1529
页数:16
相关论文
共 50 条
  • [1] One-Dimensional Parametric Determining form for the Two-Dimensional Navier-Stokes Equations
    Foias, Ciprian
    Jolly, Michael S.
    Lithio, Dan
    Titi, Edriss S.
    JOURNAL OF NONLINEAR SCIENCE, 2017, 27 (05) : 1513 - 1529
  • [2] A determining form for the two-dimensional Navier-Stokes equations: The Fourier modes case
    Foias, Ciprian
    Jolly, Michael S.
    Kravchenko, Rostyslav
    Titi, Edriss S.
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (11)
  • [3] On the two-dimensional Navier-Stokes equations in stream function form
    Guo, BY
    He, LP
    Mao, DK
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 205 (01) : 1 - 31
  • [4] On the two-dimensional Navier-Stokes equations in stream function form
    City Univ of Hong Kong, Kowloon, Hong Kong
    J Math Anal Appl, 1 (1-31):
  • [5] Turnpike Property for Two-Dimensional Navier–Stokes Equations
    Sebastián Zamorano
    Journal of Mathematical Fluid Mechanics, 2018, 20 : 869 - 888
  • [7] On the two-dimensional hydrostatic Navier-Stokes equations
    Bresch, D
    Kazhikhov, A
    Lemoine, J
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (03) : 796 - 814
  • [8] ABOUT ONE-DIMENSIONAL LINEARIZED NAVIER-STOKES EQUATIONS
    Orazov, I. O.
    Shaldanbaev, A. Sh.
    BULLETIN OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN, 2014, (04): : 8 - 10
  • [9] ON THE ONE-DIMENSIONAL NAVIER-STOKES EQUATIONS FOR COMPRESSIBLE FLUIDS
    VALLI, A
    LECTURE NOTES IN MATHEMATICS, 1990, 1431 : 173 - 179
  • [10] On the Numerical Controllability of the Two-Dimensional Heat, Stokes and Navier–Stokes Equations
    Enrique Fernández-Cara
    Arnaud Münch
    Diego A. Souza
    Journal of Scientific Computing, 2017, 70 : 819 - 858