The orders of nonsingular derivations of Lie algebras of characteristic two

被引:0
|
作者
S. Mattarei
机构
[1] Università degli Studi di Trento,Dipartimento di Matematica
来源
Israel Journal of Mathematics | 2007年 / 160卷
关键词
Great Common Divisor; Multiple Root; Frobenius Group; Quotient Ring; Maximal Class;
D O I
暂无
中图分类号
学科分类号
摘要
Nonsingular derivations of modular Lie algebras which have finite multiplicative order play a role in the coclass theory for pro-p groups and Lie algebras. A study of the set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{N}_p $$ \end{document} of positive integers which occur as orders of nonsingular derivations of finite-dimensional nonnilpotent Lie algebras of characteristic p > 0 was initiated by Shalev and continued by the present author. In this paper we continue this study in the case of characteristic two. Among other results, we prove that any divisor n of 2k − 1 with n4 > (2k − n)3 belongs to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{N}_2 $$ \end{document}. Our methods consist of elementary arguments with polynomials over finite fields and a little character theory of finite groups.
引用
收藏
页码:23 / 40
页数:17
相关论文
共 50 条