The orders of nonsingular derivations of Lie algebras of characteristic two

被引:0
|
作者
S. Mattarei
机构
[1] Università degli Studi di Trento,Dipartimento di Matematica
来源
Israel Journal of Mathematics | 2007年 / 160卷
关键词
Great Common Divisor; Multiple Root; Frobenius Group; Quotient Ring; Maximal Class;
D O I
暂无
中图分类号
学科分类号
摘要
Nonsingular derivations of modular Lie algebras which have finite multiplicative order play a role in the coclass theory for pro-p groups and Lie algebras. A study of the set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{N}_p $$ \end{document} of positive integers which occur as orders of nonsingular derivations of finite-dimensional nonnilpotent Lie algebras of characteristic p > 0 was initiated by Shalev and continued by the present author. In this paper we continue this study in the case of characteristic two. Among other results, we prove that any divisor n of 2k − 1 with n4 > (2k − n)3 belongs to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{N}_2 $$ \end{document}. Our methods consist of elementary arguments with polynomials over finite fields and a little character theory of finite groups.
引用
收藏
页码:23 / 40
页数:17
相关论文
共 50 条
  • [41] Generalized derivations of Lie algebras
    Leger, GF
    Luks, EM
    JOURNAL OF ALGEBRA, 2000, 228 (01) : 165 - 203
  • [42] ON DERIVATIONS AND AUTOMORPHISMS OF LIE ALGEBRAS
    ANDREADA.S
    ARCHIV DER MATHEMATIK, 1966, 17 (01) : 36 - &
  • [43] Sequences of Lie algebras of derivations
    Carles, R
    ARCHIV DER MATHEMATIK, 1998, 70 (04) : 262 - 269
  • [44] Lie derivations of incidence algebras
    Zhang, Xian
    Khrypchenko, Mykola
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 513 : 69 - 83
  • [45] A GENERALIZATION ON DERIVATIONS OF LIE ALGEBRAS
    Chang, Hongliang
    Chen, Yin
    Zhang, Runxuan
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (03): : 2457 - 2473
  • [46] DERIVATIONS OF LIE-ALGEBRAS
    RUITER, JD
    COMPOSITIO MATHEMATICA, 1974, 28 (03) : 299 - 303
  • [47] On Lie derivations of Lie ideals of prime algebras
    Beidar, KI
    Chebotar, MA
    ISRAEL JOURNAL OF MATHEMATICS, 2001, 123 (1) : 131 - 148
  • [48] A family of simple Lie algebras in characteristic two
    Jurman, G
    JOURNAL OF ALGEBRA, 2004, 271 (02) : 454 - 481
  • [49] LIE *DOUBLE DERIVATIONS ON LIE C*-ALGEBRAS
    Ghobadipour, N.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2010, 1 (02): : 63 - 71
  • [50] On Lie derivations of Lie ideals of prime algebras
    K. I. Beidar
    M. A. Chebotar
    Israel Journal of Mathematics, 2001, 123 : 131 - 148