A 2-factor with Short Cycles Passing Through Specified Independent Vertices in Graph

被引:0
|
作者
Jiuying Dong
机构
[1] Jiangxi University of Finance Nanchang,School of Information Technology
来源
Graphs and Combinatorics | 2008年 / 24卷
关键词
Short cycle; degree sum condition; 2-factor; specified vertices;
D O I
暂无
中图分类号
学科分类号
摘要
For a graph G, we define σ2(G) := min{d(u) + d(v)|u, v ≠ ∈ E(G), u ≠ v}. Let k ≥ 1 be an integer and G be a graph of order n ≥ 3k. We prove if σ2(G) ≥ n + k − 1, then for any set of k independent vertices v1,...,vk, G has k vertex-disjoint cycles C1,..., Ck of length at most four such that vi ∈ V(Ci) for all 1 ≤ i ≤ k. And show if σ2(G) ≥ n + k − 1, then for any set of k independent vertices v1,...,vk, G has k vertex-disjoint cycles C1,..., Ck such that vi ∈ V(Ci) for all 1 ≤ i ≤ k, V(C1) ∪...∪ V(Ck) = V(G), and |Ci| ≤ 4 for all 1 ≤ i ≤ k − 1.
引用
收藏
页码:71 / 80
页数:9
相关论文
共 50 条
  • [21] k disjoint cycles containing specified independent vertices
    Dong, Jiuying
    DISCRETE MATHEMATICS, 2008, 308 (22) : 5269 - 5273
  • [22] Edge disjoint cycles through specified vertices
    Goddyn, L
    Stacho, L
    JOURNAL OF GRAPH THEORY, 2005, 50 (03) : 246 - 260
  • [23] Long cycles through specified edges and vertices
    Nagayama, Tomokazu
    Zhang, Liang
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2005, 31 : 201 - 216
  • [24] Long cycles passing through a specified edge in a S-connected graph
    Enomoto, H
    Hirohata, K
    Ota, K
    JOURNAL OF GRAPH THEORY, 1997, 24 (03) : 275 - 279
  • [25] Vertex-Disjoint Cycles Containing Specified Vertices in a Graph
    Egawa, Yoshimi
    Matsubara, Ryota
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2006, 3 (01) : 65 - 92
  • [26] The upper bound of the number of cycles in a 2-factor of a line graph
    Fujisawa, Jun
    Xiong, Liming
    Yoshimoto, Kiyoshi
    Zhang, Shenggui
    JOURNAL OF GRAPH THEORY, 2007, 55 (01) : 72 - 82
  • [27] On degree sum conditions for long cycles and cycles through specified vertices
    Yamashita, Tomoki
    DISCRETE MATHEMATICS, 2008, 308 (24) : 6584 - 6587
  • [28] Vertex-Disjoint Cycles Containing Specified Vertices in a Bipartite Graph
    Shaohua Zhang
    Jin Yan
    Suyun Jiang
    Graphs and Combinatorics, 2016, 32 : 2171 - 2181
  • [29] Vertex-disjoint cycles containing specified vertices in a bipartite graph
    Chen, GT
    Enomoto, H
    Kawarabayashi, K
    Ota, K
    Lou, DJ
    Saito, A
    JOURNAL OF GRAPH THEORY, 2004, 46 (03) : 145 - 166
  • [30] Vertex-Disjoint Cycles Containing Specified Vertices in a Bipartite Graph
    Zhang, Shaohua
    Yan, Jin
    Jiang, Suyun
    GRAPHS AND COMBINATORICS, 2016, 32 (05) : 2171 - 2181