Toric Legendrian Subvarieties

被引:0
|
作者
Jaroslaw Buczynski
机构
[1] Institute of Mathematics,
[2] Department of Mathematics,undefined
[3] Informatics and Mechanics,undefined
[4] Warsaw University,undefined
[5] Banacha 2,undefined
来源
Transformation Groups | 2007年 / 12卷
关键词
Projective Space; Tangent Space; Convex Body; Linear Subspace; Symplectic Form;
D O I
暂无
中图分类号
学科分类号
摘要
We give the full classification of smooth toric Legendrian subvarieties in P2n-1. We also prove that under some minor assumptions the group of linear automorphisms preserving a given Legendrian subvariety preserves the contact structure of the ambient projective space.
引用
收藏
页码:631 / 646
页数:15
相关论文
共 50 条
  • [31] Isomorphism of the groups of Vassiliev invariants of Legendrian and pseudo-Legendrian knots
    Tchernov, V
    COMPOSITIO MATHEMATICA, 2003, 135 (01) : 103 - 122
  • [32] On Lagrangian and Legendrian Singularities
    Sedykh V.D.
    Arnold Mathematical Journal, 2021, 7 (2) : 195 - 212
  • [33] Legendrian Cycles and Curvatures
    Rataj, Jan
    Zaehle, Martina
    JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (04) : 2133 - 2147
  • [34] Algebraic Legendrian varieties
    Buczynski, Jaroslaw
    DISSERTATIONES MATHEMATICAE, 2009, (467) : 7 - +
  • [35] Loose Legendrian and pseudo-Legendrian knots in 3-manifolds
    Cahn, Patricia
    Chernov, Vladimir
    JOURNAL OF SYMPLECTIC GEOMETRY, 2020, 18 (03) : 651 - 689
  • [36] On nef subvarieties
    Lau, Chung Ching
    ADVANCES IN MATHEMATICS, 2019, 353 : 396 - 430
  • [37] Lagrangian and Legendrian singularities
    Goryunov, Victor V.
    Zakalyukin, V. M.
    REAL AND COMPLEX SINGULARITIES, 2007, : 169 - +
  • [38] Virtual Legendrian isotopy
    Chernov, Vladimir
    Sadykov, Rustam
    FUNDAMENTA MATHEMATICAE, 2016, 234 (02) : 127 - 137
  • [39] LEGENDRIAN HOPF LINKS
    Geiges, Hansjoerg
    Onaran, Sinem
    QUARTERLY JOURNAL OF MATHEMATICS, 2020, 71 (04): : 1419 - 1459
  • [40] Legendrian knots and monopoles
    Mrowka, Tomasz
    Rollin, Yann
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2006, 6 : 1 - 69