Model Ge microstructures as anodes for Li-ion batteries

被引:0
|
作者
Brandon R. Long
Jason L. Goldman
Ralph G. Nuzzo
Andrew A. Gewirth
机构
[1] University of Illinois at Urbana-Champaign,Department of Chemistry
关键词
Li-ion batteries; Germanium anode; Microstructured electrode; High rate;
D O I
暂无
中图分类号
学科分类号
摘要
We examine the properties of microstructured Ge electrodes for Li-ion battery applications. Model-microfabricated single-crystalline Ge electrode structures are used to investigate the effects of Cu coating and partial discharging on cycle life. Results show that the Ge microstructures insert Li more isotropically than do comparable ones comprised of Si. A model Ge microbar electrode with a Cu coating is capable of 95 % coulombic efficiency after 40 cycles when the amount of charge is limited. The microstructured Ge electrode is found to exhibit poor performance at higher delithiation rates (above C/5) relative to microstructured Si electrodes. These results provide an understanding of the effects of electrochemical processes on model-microstructured Ge electrodes which may ultimately aid in the development of advanced anodes for Li-ion batteries.
引用
收藏
页码:3015 / 3020
页数:5
相关论文
共 50 条
  • [31] Reduction mechanisms of additives on Si anodes of Li-ion batteries
    de la Hoz, Julibeth M. Martinez
    Balbuena, Perla B.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (32) : 17091 - 17098
  • [32] Nanostructured metal oxides for anodes of Li-ion rechargeable batteries
    Ming Au
    Thad Adams
    Journal of Materials Research, 2010, 25 : 1649 - 1655
  • [33] Cracking in Si-based anodes for Li-ion batteries
    Aifantis, KE
    Dempsey, JP
    Hackney, SA
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2005, 10 (05) : 403 - 408
  • [34] Tuning Silicon Nanorods for Anodes of Li-Ion Rechargeable Batteries
    Au, Ming
    Garcia-Diaz, Brenda
    Adams, Thad
    He, Yuping
    Zhao, Yiping
    Yassar, Reza Shahbazian
    Ghassemi, Hessam
    ELECTROCHEMISTRY OF NOVEL MATERIALS FOR ENERGY STORAGE AND CONVERSION, 2011, 33 (27): : 35 - 43
  • [35] Recent studies on metal oxides as anodes for Li-ion batteries
    Sharma, N
    Rao, GVS
    Chowdari, BVR
    SOLID STATE IONICS: THE SCIENCE AND TECHNOLOGY OF IONS IN MOTION, 2004, : 411 - 424
  • [36] Diffusion kinetics of water in graphite anodes for Li-ion batteries
    Eser, Jochen C.
    Deichmann, Birthe
    Wirsching, Tobias
    Merklein, Lisa
    Mueller, Marcus
    Scharfer, Philip
    Schabel, Wilhelm
    DRYING TECHNOLOGY, 2022, 40 (06) : 1130 - 1145
  • [37] High capacity conversion anodes in Li-ion batteries: A review
    Bhatt, Mahesh Datt
    Lee, Jin Yong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (21) : 10852 - 10905
  • [38] Conversion chemistries for anodes, cathodes, and separators for Li-ion batteries
    Yushin, Gleb
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [39] Galactomannan binding agents for silicon anodes in Li-ion batteries
    Dufficy, Martin K.
    Khan, Saad A.
    Fedkiw, Peter S.
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (22) : 12023 - 12030
  • [40] Carbon nanospheres grown on graphene as anodes for Li-ion batteries
    Zou, Youlan
    Zhou, Xiangyang
    Yang, Juan
    RSC ADVANCES, 2014, 4 (49) : 25552 - 25555