Hilfer fractional differential inclusions with Erdélyi–Kober fractional integral boundary condition

被引:0
|
作者
Adel Lachouri
Mohammed S. Abdo
Abdelouaheb Ardjouni
Bahaaeldin Abdalla
Thabet Abdeljawad
机构
[1] Annaba University,Department of Mathematics
[2] Hodeidah University,Department of Mathematics
[3] University of Souk Ahras,Department of Mathematics and Informatics
[4] Prince Sultan University,Department of Mathematics and General Sciences
[5] China Medical University,Department of Medical Research
[6] Asia University,Department of Computer Science and Information Engineering
关键词
Fractional inclusion problem; Hilfer and Erdélyi–Kober fractional operators; Existence; Fractional integral boundary conditions; Convex; Nonconvex; Fixed point theorems; 34A08; 34A12; 34B15;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we debate the existence of solutions for a nonlinear Hilfer fractional differential inclusion with nonlocal Erdélyi–Kober fractional integral boundary conditions (FIBC). Both cases of convex- and nonconvex-valued right-hand side are considered. Our obtained results are new in the framework of Hilfer fractional derivative and Erdélyi–Kober fractional integral with FIBC via the fixed point theorems (FPTs) for a set-valued analysis. Some pertinent examples demonstrating the effectiveness of the theoretical results are presented.
引用
收藏
相关论文
共 50 条
  • [21] Existence results for fractional differential inclusions with Erdelyi-Kober fractional integral conditions
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2017, 25 (02): : 5 - 24
  • [22] Time-fractional porous medium equation: Erdélyi-Kober integral solutions, and numerical methods
    Lopez, Belen
    Okrasinska-Plociniczak, Hanna
    Plociniczak, Lukasz
    Rocha, Juan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 128
  • [23] On Perturbed Fractional Differential Inclusions with Nonlocal Multi-point Erdelyi-Kober Fractional Integral Boundary Conditions
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (01)
  • [24] Erdélyi–Kober Fractional Integrals and Radon Transforms for Mutually Orthogonal Affine Planes
    Boris Rubin
    Yingzhan Wang
    Fractional Calculus and Applied Analysis, 2020, 23 : 967 - 979
  • [25] Existence, uniqueness and limit property of solutions to quadratic Erd,lyi-Kober type integral equations of fractional order
    Wang, JinRong
    Zhu, Chun
    Feckan, Michal
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (06): : 779 - 791
  • [26] Operational Method for Solving Fractional Differential Equations with the Left-and Right-Hand Sided Erdélyi-Kober Fractional Derivatives
    Latif A. M. Hanna
    Maryam Al-Kandari
    Yuri Luchko
    Fractional Calculus and Applied Analysis, 2020, 23 : 103 - 125
  • [27] On (k, ψ)-Hilfer Fractional Differential Equations and Inclusions with Mixed (k, ψ)-Derivative and Integral Boundary Conditions
    Ntouyas, Sotiris K.
    Ahmad, Bashir
    Nuchpong, Cholticha
    Tariboon, Jessada
    AXIOMS, 2022, 11 (08)
  • [28] A Study of Fractional Differential Equations and Inclusions with Nonlocal Erdelyi-Kober Type Integral Boundary Conditions
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Zhou, Yong
    Alsaedi, Ahmed
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (05) : 1315 - 1328
  • [29] Numerical scheme for Erdélyi–Kober fractional diffusion equation using Galerkin–Hermite method
    Łukasz Płociniczak
    Mateusz Świtała
    Fractional Calculus and Applied Analysis, 2022, 25 : 1651 - 1687
  • [30] An Application of Multiple Erdélyi-Kober Fractional Integral Operators to Establish New Inequalities Involving a General Class of Functions
    Tassaddiq, Asifa
    Srivastava, Rekha
    Alharbi, Rabab
    Kasmani, Ruhaila Md
    Qureshi, Sania
    FRACTAL AND FRACTIONAL, 2024, 8 (08)