Trans-Sasakian Manifolds Homothetic to Sasakian Manifolds

被引:0
|
作者
Sharief Deshmukh
机构
[1] King Saud University,Department of Mathematics, College of science
来源
关键词
Almost contact metric manifold; Sasakian manifold; trans-Sasakian manifold; Poisson equation; 53C15; 53D10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, it is shown that for a 3-dimensional compact simply connected trans-Sasakian manifold of type (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\alpha,\beta)}$$\end{document}, the smooth functions α,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha,\beta}$$\end{document} satisfy the Poisson equations Δα=β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta \alpha = \beta}$$\end{document}, Δα=α2β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta \alpha = \alpha ^{2}\beta}$$\end{document} and Δβ=α2β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta \beta = \alpha ^{2}\beta}$$\end{document}, respectively, if and only if it is homothetic to a Sasakian manifold. We also find a necessary and sufficient condition for a connected 3-dimensional trans-Sasakian manifold of type (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\alpha,\beta)}$$\end{document} in terms of a differential equation satisfied by the smooth function α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha}$$\end{document} to be homothetic to a Sasakian manifold.
引用
收藏
页码:2951 / 2958
页数:7
相关论文
共 50 条
  • [41] On a class of three-dimensional trans-Sasakian manifolds
    De, Uday Chand
    De, Krishnendu
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 27 (04): : 795 - 808
  • [42] EINSTEIN-WEYL STRUCTURES ON TRANS-SASAKIAN MANIFOLDS
    Chen, Xiaomin
    MATHEMATICA SLOVACA, 2019, 69 (06) : 1425 - 1436
  • [43] Kahlerian Structure on the Product of Two Trans-Sasakian Manifolds
    Bouzir, Habib
    Beldjilali, Gherici
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2020, 13 (02): : 135 - 143
  • [44] On trans-Sasakian 3-manifolds as η-Einstein solitons
    Ganguly, D.
    Dey, S.
    Bhattacharyya, A.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2021, 13 (02) : 460 - 474
  • [45] Ricci η-parallel trans-Sasakian 3-manifolds
    Zhao, Yan
    QUAESTIONES MATHEMATICAE, 2021, 44 (01) : 7 - 15
  • [46] Certain Results on Ricci Solitons in Trans-Sasakian Manifolds
    Bagewadi, C. S.
    Ingalahalli, Gurupadawa
    JOURNAL OF MATHEMATICS, 2013, 2013
  • [47] On pseudo-slant submanifolds of trans-Sasakian manifolds
    De, Uday Chand
    Sarkar, Avijit
    PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES, 2011, 60 (01) : 1 - 11
  • [48] Ricci Tensors on Trans-Sasakian 3-manifolds
    Wang, Wenjie
    Liu, Ximin
    FILOMAT, 2018, 32 (12) : 4365 - 4374
  • [49] A note on slant submanifolds of nearly trans-Sasakian manifolds
    Al-Solamy, Falleh R.
    Khan, Viqar Azam
    MATHEMATICA SLOVACA, 2010, 60 (01) : 129 - 136
  • [50] On generalized Ricci-recurrent trans-Sasakian manifolds
    Kim, JS
    Prasad, R
    Tripathi, MM
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2002, 39 (06) : 953 - 961