Constructing Solutions for the Generalized Hénon–Heiles System Through the Painlevé Test

被引:0
|
作者
S. Yu. Vernov
机构
[1] Moscow State University,Skobeltsyn Institute of Nuclear Physics
来源
关键词
nonintegrable systems; Painlevé test; singularity analysis; polynomial potential; Hénon–Heiles system; Laurent series; elliptic functions;
D O I
暂无
中图分类号
学科分类号
摘要
The generalized Hénon–Heiles system is considered. New special solutions for two nonintegrable cases are obtained using the Painlevé test. The solutions have the form of the Laurent series depending on three parameters. One parameter determines the singularity-point location, and the other two parameters determine the coefficients in the Laurent series. For certain values of these two parameters, the series becomes the Laurent series for the known exact solutions. It is established that such solutions do not exist in other nonintegrable cases.
引用
收藏
页码:792 / 801
页数:9
相关论文
共 50 条
  • [11] The Painleve analysis and construction of solutions for the generalized Henon-Heiles system
    Timoshkova, EI
    Vernov, SY
    ORDER AND CHAOS IN STELLAR AND PLANETARY SYSTEMS, 2004, 316 : 28 - 33
  • [12] A New Discrete Hénon-Heiles System
    Alan K Common
    Andrew N W Hone
    Micheline Musette
    Journal of Nonlinear Mathematical Physics, 2003, 10 (Suppl 2) : 27 - 40
  • [13] Classifying orbits in the classical Hénon–Heiles Hamiltonian system
    Euaggelos E. Zotos
    Nonlinear Dynamics, 2015, 79 : 1665 - 1677
  • [14] CKP and BKP Equations Related to the Generalized Quartic Hénon–Heiles Hamiltonian
    M. Musette
    C. Verhoeven
    Theoretical and Mathematical Physics, 2003, 137 : 1561 - 1573
  • [15] An overview of the escape dynamics in the Hénon–Heiles Hamiltonian system
    Euaggelos E. Zotos
    Meccanica, 2017, 52 : 2615 - 2630
  • [16] Liouvillian integrability of the three-dimensional generalized Hénon–Heiles Hamiltonian
    Idriss El Fakkousy
    Jaouad Kharbach
    Walid Chatar
    Mohamed Benkhali
    Abdellah Rezzouk
    Mohammed Ouazzani-Jamil
    The European Physical Journal Plus, 135
  • [17] An overview of the escape dynamics in the H,non-Heiles Hamiltonian system
    Zotos, Euaggelos E.
    MECCANICA, 2017, 52 (11-12) : 2615 - 2630
  • [18] A New Case of Separability in a Quartic Hénon-Heiles System
    Nicola Sottocornola
    Journal of Nonlinear Mathematical Physics, 2021, 28 : 303 - 308
  • [19] Approximate first integrals of the Hénon-Heiles system revisited
    Ünal, G.
    Khalique, C.M.
    Communications in Nonlinear Science and Numerical Simulation, 2005, 10 (01) : 73 - 83
  • [20] Non-integrability of a three-dimensional generalized Henon-Heiles system
    Christov, Ognyan
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (10):