Newton's second law with a semiconvex potential

被引:0
|
作者
Hynd, Ryan [1 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
来源
基金
美国国家科学基金会;
关键词
35L65; 60B10; 26B25; 35D30; LINEAR EVOLUTION EQUATION; YOUNG MEASURE SOLUTIONS; GLOBAL EXISTENCE; TIME DISCRETIZATION; POISSON SYSTEMS; WASSERSTEIN; CONVERGENCE; DYNAMICS; BEHAVIOR; SPACE;
D O I
10.1007/s42985-021-00136-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We make the elementary observation that the differential equation associated with Newton's second law m gamma<spacing diaeresis>(t)=-DV(gamma(t))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ddot{\gamma }(t)=-D V(\gamma (t))$$\end{document} always has a solution for given initial conditions provided that the potential energy V is semiconvex. That is, if -DV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-D V$$\end{document} satisfies a one-sided Lipschitz condition. We will then build upon this idea to verify the existence of solutions for the Jeans-Vlasov equation, the pressureless Euler equations in one spatial dimension, and the equations of elastodynamics under appropriate semiconvexity assumptions.
引用
收藏
页数:34
相关论文
共 50 条