Newton's second law with a semiconvex potential

被引:0
|
作者
Hynd, Ryan [1 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
来源
基金
美国国家科学基金会;
关键词
35L65; 60B10; 26B25; 35D30; LINEAR EVOLUTION EQUATION; YOUNG MEASURE SOLUTIONS; GLOBAL EXISTENCE; TIME DISCRETIZATION; POISSON SYSTEMS; WASSERSTEIN; CONVERGENCE; DYNAMICS; BEHAVIOR; SPACE;
D O I
10.1007/s42985-021-00136-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We make the elementary observation that the differential equation associated with Newton's second law m gamma<spacing diaeresis>(t)=-DV(gamma(t))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ddot{\gamma }(t)=-D V(\gamma (t))$$\end{document} always has a solution for given initial conditions provided that the potential energy V is semiconvex. That is, if -DV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-D V$$\end{document} satisfies a one-sided Lipschitz condition. We will then build upon this idea to verify the existence of solutions for the Jeans-Vlasov equation, the pressureless Euler equations in one spatial dimension, and the equations of elastodynamics under appropriate semiconvexity assumptions.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] Newton's Interpretation of Newton's Second Law
    Bruce Pourciau
    Archive for History of Exact Sciences, 2006, 60 : 157 - 207
  • [2] Newton's interpretation of Newton's second law
    Pourciau, B
    ARCHIVE FOR HISTORY OF EXACT SCIENCES, 2006, 60 (02) : 157 - 207
  • [3] Is Newton's second law really Newton's?
    Pourciau, Bruce
    AMERICAN JOURNAL OF PHYSICS, 2011, 79 (10) : 1015 - 1022
  • [4] On the deduction of Newton's second law
    Lopes Coelho, R.
    ACTA MECHANICA, 2018, 229 (05) : 2287 - 2290
  • [5] Linearization of Newton's Second Law
    Paliathanasis, Andronikos
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (12)
  • [6] On the deduction of Newton’s second law
    R. Lopes Coelho
    Acta Mechanica, 2018, 229 : 2287 - 2290
  • [7] Feeling Newton's Second Law
    Coletta, Vincent P.
    Bernardin, Josh
    Pascoe, Daniel
    Hoemke, Anatol
    PHYSICS TEACHER, 2019, 57 (02): : 88 - 90
  • [8] Newton's Second Law to Go
    Haugland, Ole Anton
    PHYSICS TEACHER, 2019, 57 (02): : 85 - 87
  • [9] Newton's second law and the multiplication of distributions
    Sarrico, C. O. R.
    Paiva, A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (01)
  • [10] Newton's second law in field theory
    Alonso-Blanco, R. J.
    Munoz-Diaz, J.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2021, 79