Periodic Dynamics of a Class of Non-autonomous Contact Hamiltonian Systems

被引:0
|
作者
Zhanyong Li
Yaozong Tang
A. Mina Sha Bier
Jianguo Ye
机构
[1] Kashi University,School of Mathematics and Statistics
关键词
Contact Hamiltonian system; Isolated periodic solution; Topological index of periodic solution; Asymptotic stability;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the existence, number and stability of periodic orbits for the following contact Hamiltonian system H(p,q,s,t)=p22m+G(t,q,m)-mdq+cs(c>0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(p,q,s,t)=\frac{p^{2}}{2m}+G(t,q,m)-mdq+cs(c>0)$$\end{document}. At the same time, unbounded conditions of each solution are also given. The contact Hamiltonian system actually represents a kind of physical phenomenon with non-conservation of energy, but the contact Hamiltonian system studied in this paper represents a one-dimensional damped oscillator system with constant variable sign damping coefficient under certain conditions. Therefore, it is of great physical significance to study the periodic dynamic properties of such system.
引用
收藏
页码:663 / 676
页数:13
相关论文
共 50 条
  • [21] PERIODIC SOLUTION FOR NON-AUTONOMOUS SECOND ORDER HAMILTONIAN SYSTEMS ON TIME SCALES
    Su, You-Hui
    Li, Wan-Tong
    DYNAMIC SYSTEMS AND APPLICATIONS, 2009, 18 (3-4): : 621 - 636
  • [22] Non-autonomous second order Hamiltonian systems
    Pipan, John
    Schechter, Martin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (02) : 351 - 373
  • [23] Periodic solutions of a class of non-autonomous second-order systems
    Wu, XP
    Tang, CL
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 236 (02) : 227 - 235
  • [24] Invariant normalization of non-autonomous Hamiltonian systems
    Zhuravlev, VF
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2002, 66 (03): : 347 - 355
  • [25] Non-autonomous normal forms for Hamiltonian systems
    McDonald, RJ
    Murdock, J
    Namachchivaya, NS
    DYNAMICS AND STABILITY OF SYSTEMS, 1999, 14 (04): : 357 - 384
  • [26] Invariant normalization of non-autonomous Hamiltonian systems
    Petrov, AG
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2004, 68 (03): : 357 - 367
  • [27] Invariant normalization of non-autonomous Hamiltonian systems
    Petrov, A.G.
    Journal of Applied Mathematics and Mechanics, 2004, 68 (03): : 357 - 367
  • [28] Parametric competition in non-autonomous Hamiltonian systems
    Souza, L. A. M.
    Faria, J. G. P.
    Nemes, M. C.
    OPTICS COMMUNICATIONS, 2014, 331 : 148 - 153
  • [29] Existence of homoclinic solutions for a class of asymptotically quadratic non-autonomous Hamiltonian systems
    Zhang, Qiongfen
    Tang, X. H.
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (5-6) : 778 - 789
  • [30] New existence results on periodic solutions of non-autonomous second order Hamiltonian systems
    Wang, Zhiyong
    Zhang, Jihui
    APPLIED MATHEMATICS LETTERS, 2018, 79 : 43 - 50