Inverse eigenvalue problem of Hermitian generalized anti-hamiltonian matrices

被引:0
|
作者
Zhongzhi Z. [1 ,2 ,3 ]
Changrong L. [1 ,2 ,3 ]
机构
[1] School of Math. Science, Central South Univ., Changsha
[2] Dept. of Math., Hunan City Univ., Yiyang
[3] Faculty of Mathematics and Econometrics, Hunan Univ., Changsha
基金
中国国家自然科学基金;
关键词
Hermitian generalized anti-Hamiltonian matrix; Inverse eigenvalue problem; Optimal approxmation;
D O I
10.1007/s11766-004-0043-8
中图分类号
学科分类号
摘要
In this paper, the inverse eigenvalue problem of Hermitian generalized anti-Hamiltonian matrices and relevant optimal approximate problem are considered. The necessary and sufficient conditions of the solvability for inverse eigenvalue problem and an expression of the general solution of the problem are derived. The solution of the relevant optimal approximate problem is given. © 2004, Springer Verlag. All rights reserved.
引用
收藏
页码:342 / 348
页数:6
相关论文
共 50 条
  • [21] The inverse eigenvalue problem for Hermitian matrices whose graphs are cycles
    Fernandes, Rosario
    da Fonseca, C. M.
    LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (07): : 673 - 682
  • [22] Inverse eigenvalue problem for normal J-hamiltonian matrices
    Gigola, Silvia
    Lebtahi, Leila
    Thome, Nestor
    APPLIED MATHEMATICS LETTERS, 2015, 48 : 36 - 40
  • [23] Generalized Inverse Eigenvalue Problem for a Class Of Triangular Matrices
    Li, Shuai
    Li, Zhibin
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL AND INFORMATION SCIENCES (ICCIS 2014), 2014, : 108 - 113
  • [24] The Unique of Inverse Eigenvalue Problem for a Generalized Jacobi Matrices
    Li, Zhibin
    Zhao, Xinxin
    ACC 2009: ETP/IITA WORLD CONGRESS IN APPLIED COMPUTING, COMPUTER SCIENCE, AND COMPUTER ENGINEERING, 2009, : 21 - 23
  • [25] Inverse Eigenvalue Problem for Generalized Periodic Jacobi Matrices
    Bin Li, Zhi
    Zhao, Xin Xin
    Li, Wei
    PROCEEDINGS OF 2008 INTERNATIONAL PRE-OLYMPIC CONGRESS ON COMPUTER SCIENCE, VOL II: INFORMATION SCIENCE AND ENGINEERING, 2008, : 228 - 232
  • [26] Inverse Generalized Eigenvalue Problem for Generalized Jacobi Matrices With Linear Relation
    Li, Zhibin
    Chang, Jing
    ICMS2010: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION, VOL 6: MODELLING & SIMULATION INDUSTRIAL ENGINEERING & MANAGEMENT, 2010, : 369 - 372
  • [27] Inverse eigenvalue problem for anti-centrosymmetric matrices
    Yuan, Yan-Dong
    Wang, Xiang-Rong
    PROCEEDINGS OF THE 14TH CONFERENCE OF INTERNATIONAL LINEAR ALGEBRA SOCIETY, 2007, : 398 - 401
  • [28] INVERSE SPECTRAL PROBLEM FOR SOME GENERALIZED JACOBI HERMITIAN MATRICES
    Ivasiuk, I. Ya.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2009, 15 (04): : 333 - 355
  • [29] On solvability of inverse eigenvalue problems with Hermitian matrices
    Li, Luoluo
    Linear Algebra and Its Applications, 1997, 253 (1-3): : 89 - 101
  • [30] On solvability of inverse eigenvalue problems with Hermitian matrices
    Li, LL
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 253 : 89 - 101