Approximate Toeplitz Matrix Problem Using Semidefinite Programming

被引:0
|
作者
S. Al-Homidan
机构
[1] King Fahd University of Petroleum & Minerals,Department of Mathematical Sciences
来源
Journal of Optimization Theory and Applications | 2007年 / 135卷
关键词
Primal-dual interior-point methods; Projection methods; Toeplitz matrices; Semidefinite programming;
D O I
暂无
中图分类号
学科分类号
摘要
Given a data matrix, we find its nearest symmetric positive-semidefinite Toeplitz matrix. In this paper, we formulate the problem as an optimization problem with a quadratic objective function and semidefinite constraints. In particular, instead of solving the so-called normal equations, our algorithm eliminates the linear feasibility equations from the start to maintain exact primal and dual feasibility during the course of the algorithm. Subsequently, the search direction is found using an inexact Gauss-Newton method rather than a Newton method on a symmetrized system and is computed using a diagonal preconditioned conjugate-gradient-type method. Computational results illustrate the robustness of the algorithm.
引用
收藏
页码:583 / 598
页数:15
相关论文
共 50 条
  • [31] Semidefinite Programming for Approximate Maximum Likelihood Sinusoidal Parameter Estimation
    Kenneth W. K. Lui
    H. C. So
    EURASIP Journal on Advances in Signal Processing, 2009
  • [32] A semidefinite programming approach to the quadratic knapsack problem
    Helmberg, C
    Rendl, F
    Weismantel, R
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2000, 4 (02) : 197 - 215
  • [33] A Semidefinite Programming Approach to the Quadratic Knapsack Problem
    C. Helmberg
    F. Rendl
    R. Weismantel
    Journal of Combinatorial Optimization, 2000, 4 : 197 - 215
  • [34] A semidefinite programming approach to the generalized problem of moments
    Jean B. Lasserre
    Mathematical Programming, 2008, 112 : 65 - 92
  • [35] Semidefinite programming relaxations for the graph partitioning problem
    Wolkowicz, Henry
    Zhao, Qing
    Discrete Applied Mathematics, 1999, 96-97 : 461 - 479
  • [36] Characterizations of -Approximate Solutions for Robust Convex Semidefinite Programming Problems
    Wangkeeree, Rabian
    Preechasilp, Pakkapon
    CARPATHIAN JOURNAL OF MATHEMATICS, 2024, 40 (02) : 493 - 513
  • [37] Semidefinite Programming for Approximate Maximum Likelihood Sinusoidal Parameter Estimation
    Lui, Kenneth W. K.
    So, H. C.
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2009,
  • [38] An improved semidefinite programming relaxation for the satisfiability problem
    Miguel F. Anjos
    Mathematical Programming, 2005, 102 : 589 - 608
  • [39] ON SEMIDEFINITE PROGRAMMING RELAXATIONS OF THE TRAVELING SALESMAN PROBLEM
    De Klerk, Etienne
    Pasechnik, Dmitrii V.
    Sotirov, Renata
    SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (04) : 1559 - 1573
  • [40] Semidefinite Programming Relaxations for the Quadratic Assignment Problem
    Qing Zhao
    Stefan E. Karisch
    Franz Rendl
    Henry Wolkowicz
    Journal of Combinatorial Optimization, 1998, 2 : 71 - 109