Primary 20D25;
Secondary 20D10;
Supersolvable group;
Pairwise relatively prime indices;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper, we show that if G is a finite group with three supersolvable subgroups of pairwise relatively prime indices in G and G′ is nilpotent, then G is supersolvable. Let π(G) denote the set of prime divisors of |G| and max(π(G)) denote the largest prime divisor of |G|. We also establish that if G is a finite group such that G has three supersolvable subgroups H, K, and L whose indices in G are pairwise relatively prime, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${q \nmid p-1}$$\end{document} where p = max(π(G)) and q = max(π(L)) with L a Hall p′-subgroup of G, then G is supersolvable.
机构:
United Arab Emirates Univ, Dept Math Sci, POB 17551, Al Ain, U Arab EmiratesUnited Arab Emirates Univ, Dept Math Sci, POB 17551, Al Ain, U Arab Emirates