On a group with three supersolvable subgroups of pairwise relatively prime indices

被引:0
|
作者
Neil Flowers
Thomas P. Wakefield
机构
[1] Youngstown State University,Department of Mathematics and Statistics
来源
Archiv der Mathematik | 2010年 / 95卷
关键词
Primary 20D25; Secondary 20D10; Supersolvable group; Pairwise relatively prime indices;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we show that if G is a finite group with three supersolvable subgroups of pairwise relatively prime indices in G and G′ is nilpotent, then G is supersolvable. Let π(G) denote the set of prime divisors of |G| and max(π(G)) denote the largest prime divisor of |G|. We also establish that if G is a finite group such that G has three supersolvable subgroups H, K, and L whose indices in G are pairwise relatively prime, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q \nmid p-1}$$\end{document} where p =  max(π(G)) and q = max(π(L)) with L a Hall p′-subgroup of G, then G is supersolvable.
引用
收藏
页码:309 / 315
页数:6
相关论文
共 50 条