We give a regularity result for the free Schrödinger equations set in a bounded domain of ℝN which extends the 1-dimensional result proved in Beauchard and Laurent (J. Math. Pures Appl. 94(5):520–554, 2010) with different arguments. We also give other equivalent results, for example, for the free Schrödinger equation, if the initial value is in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$H^{1}_{0}(\varOmega)$\end{document} and the right hand side f can be decomposed in f=g+h where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$g\in L^{1}(0,T;H^{1}_{0}(\varOmega))$\end{document} and h∈L2(0,T;L2(Ω)), Δh=0 and h/Γ∈L2(0,T;L2(Γ)), then the solution is in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$C([0,T];H^{1}_{0}(\varOmega))$\end{document}. This obviously contains the case f∈L2(0,T;H1(Ω)). This result is essential for controllability purposes in the 1-dimensional case as shown in Beauchard and Laurent (J. Math. Pures Appl. 94(5):520–554, 2010) and might be interesting for the N-dimensional case where the controllability problem is open.