Stable reduced Hessian updates for indefinite quadratic programming

被引:0
|
作者
R. Fletcher
机构
[1] Department of Mathematics,
[2] University of Dundee,undefined
[3] Dundee DD1 4HN,undefined
[4] Scotland,undefined
[5] UK,undefined
[6] ¶e-mail: fletcher@maths.dundee.ac.uk,undefined
来源
Mathematical Programming | 2000年 / 87卷
关键词
Quadratic Programming; Canonical Form; Search Direction; Hessian Matrix; Basis Matrix;
D O I
暂无
中图分类号
学科分类号
摘要
Stable techniques are considered for updating the reduced Hessian matrix that arises in a null-space active set method for quadratic programming when the Hessian matrix itself may be indefinite. A scheme for defining and updating the null-space basis matrix is described which is adequately stable and allows advantage to be taken of sparsity in the constraint matrix. A new canonical form for the reduced Hessian matrix is proposed that can be updated in a numerically stable way. Some consequences for the choice of minor iteration search direction are described.
引用
收藏
页码:251 / 264
页数:13
相关论文
共 50 条
  • [21] A Global Optimization Algorithm for Solving Indefinite Quadratic Programming
    Wang, Chunfeng
    Deng, Yaping
    Shen, Peiping
    ENGINEERING LETTERS, 2020, 28 (04) : 1058 - 1062
  • [22] INDEFINITE QUADRATIC PROGRAMMING WITH NON-LINEAR CONSTRAINTS
    SWARUP, K
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1967, 47 (06): : 411 - &
  • [23] An approximation algorithm for indefinite mixed integer quadratic programming
    Alberto Del Pia
    Mathematical Programming, 2023, 201 : 263 - 293
  • [24] Continuity of the optimal value function in indefinite quadratic programming
    Nguyen Nang Tam
    Journal of Global Optimization, 2002, 23 : 43 - 61
  • [25] An Alternative Multiplicative Updates Algorithm for Nonnegative Quadratic Programming
    Zhou, Ye
    He, Zhaoshui
    Huang, Shifeng
    Liu, Jiasui
    Jiang, Wenwu
    Wang, Peitao
    Xie, Shengli
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 4332 - 4336
  • [26] An algorithm for piece-wise indefinite quadratic programming problem
    Arora, Ritu
    Gupta, Kavita
    CROATIAN OPERATIONAL RESEARCH REVIEW, 2020, 11 (01) : 39 - 51
  • [27] Convex relaxation and Lagrangian decomposition for indefinite integer quadratic programming
    Sun, X. L.
    Li, J. L.
    Luo, H. Z.
    OPTIMIZATION, 2010, 59 (05) : 627 - 641
  • [28] A weighting method for 0–1 indefinite quadratic bilevel programming
    S. R. Arora
    Ritu Arora
    Operational Research, 2011, 11 : 311 - 324
  • [29] On a solution method in indefinite quadratic programming under linear constraints
    Tran Hung Cuong
    Lim, Yongdo
    Nguyen Dong Yen
    OPTIMIZATION, 2024, 73 (04) : 1087 - 1112
  • [30] Indefinite quadratic integer bilevel programming problem with bounded variables
    Narang R.
    Arora S.R.
    OPSEARCH, 2009, 46 (4) : 428 - 448