The rate of convergence of the Walk on Spheres Algorithm

被引:0
|
作者
Ilia Binder
Mark Braverman
机构
[1] University of Toronto,Department of Mathematics
[2] Princeton University,Department of Computer Science
来源
关键词
Walk on spheres algorithm; harmonic measure; potential theory; 60G42; 65C05; 31B25; 31B05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we examine the rate of convergence of one of the standard algorithms for emulating exit probabilities of Brownian motion, the Walk on Spheres (WoS) algorithm. We obtain a complete characterization of the rate of convergence of WoS in terms of the local geometry of a domain.
引用
收藏
页码:558 / 587
页数:29
相关论文
共 50 条
  • [31] Efficient modified "walk on spheres" algorithm for the linearized Poisson-Bolzmann equation
    Hwang, CO
    Mascagni, M
    APPLIED PHYSICS LETTERS, 2001, 78 (06) : 787 - 789
  • [32] HITTING TIME FOR BESSEL PROCESSES-WALK ON MOVING SPHERES ALGORITHM (WOMS)
    Deaconu, Madalina
    Herrmann, Samuel
    ANNALS OF APPLIED PROBABILITY, 2013, 23 (06): : 2259 - 2289
  • [33] A global random walk on spheres algorithm for transient heat equation and some extensions
    Sabelfeld, Karl K.
    MONTE CARLO METHODS AND APPLICATIONS, 2019, 25 (01): : 85 - 96
  • [34] Rate of convergence to Gaussian measures on n-spheres and Jacobi hypergroups
    Voit, M
    ANNALS OF PROBABILITY, 1997, 25 (01): : 457 - 477
  • [35] On the rate of convergence of the Gaver-Stehfest algorithm
    Kuznetsov, Alexey
    Miles, Justin
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (02) : 1645 - 1664
  • [37] An efficient exponential algorithm with exponential convergence rate
    Chen, CC
    Cheng, KS
    PROCEEDINGS OF THE EUROMICRO SYSTEMS ON DIGITAL SYSTEM DESIGN, 2004, : 548 - 555
  • [38] ON THE RATE OF CONVERGENCE OF THE IMAGE SPACE RECONSTRUCTION ALGORITHM
    Han, Jian
    Han, Lixing
    Neumann, Michael
    Prasad, Upendra
    OPERATORS AND MATRICES, 2009, 3 (01): : 41 - 58
  • [39] Estimates of the convergence rate for a dynamical reconstruction algorithm
    Mart'yanov A.S.
    Proceedings of the Steklov Institute of Mathematics, 2006, 255 (Suppl 2) : S115 - S125
  • [40] Convergence rate of a generalized additive Schwarz algorithm
    Jin-ping Zeng
    Gao-jie Chen
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2006, 24 (05) : 635 - 646