Rates of convergence for inexact Krasnosel’skii–Mann iterations in Banach spaces

被引:0
|
作者
Mario Bravo
Roberto Cominetti
Matías Pavez-Signé
机构
[1] Universidad de Santiago de Chile,Departamento de Matemática y Ciencia de la Computación
[2] Universidad Adolfo Ibáñez,Facultad de Ingeniería y Ciencias
[3] Universidad de Chile,Departamento de Ingeniería Matemática
来源
Mathematical Programming | 2019年 / 175卷
关键词
Nonexpansive maps; Fixed point iterations; Rates of convergence; Evolution equations; 47H09; 47H10; 65J08; 65K15; 60J10;
D O I
暂无
中图分类号
学科分类号
摘要
We study the convergence of an inexact version of the classical Krasnosel’skii–Mann iteration for computing fixed points of nonexpansive maps. Our main result establishes a new metric bound for the fixed-point residuals, from which we derive their rate of convergence as well as the convergence of the iterates towards a fixed point. The results are applied to three variants of the basic iteration: infeasible iterations with approximate projections, the Ishikawa iteration, and diagonal Krasnosels’kii–Mann schemes. The results are also extended to continuous time in order to study the asymptotics of nonautonomous evolution equations governed by nonexpansive operators.
引用
收藏
页码:241 / 262
页数:21
相关论文
共 50 条