Rates of convergence for inexact Krasnosel’skii–Mann iterations in Banach spaces

被引:0
|
作者
Mario Bravo
Roberto Cominetti
Matías Pavez-Signé
机构
[1] Universidad de Santiago de Chile,Departamento de Matemática y Ciencia de la Computación
[2] Universidad Adolfo Ibáñez,Facultad de Ingeniería y Ciencias
[3] Universidad de Chile,Departamento de Ingeniería Matemática
来源
Mathematical Programming | 2019年 / 175卷
关键词
Nonexpansive maps; Fixed point iterations; Rates of convergence; Evolution equations; 47H09; 47H10; 65J08; 65K15; 60J10;
D O I
暂无
中图分类号
学科分类号
摘要
We study the convergence of an inexact version of the classical Krasnosel’skii–Mann iteration for computing fixed points of nonexpansive maps. Our main result establishes a new metric bound for the fixed-point residuals, from which we derive their rate of convergence as well as the convergence of the iterates towards a fixed point. The results are applied to three variants of the basic iteration: infeasible iterations with approximate projections, the Ishikawa iteration, and diagonal Krasnosels’kii–Mann schemes. The results are also extended to continuous time in order to study the asymptotics of nonautonomous evolution equations governed by nonexpansive operators.
引用
收藏
页码:241 / 262
页数:21
相关论文
共 50 条
  • [1] Rates of convergence for inexact Krasnosel'skii-Mann iterations in Banach spaces
    Bravo, Mario
    Cominetti, Roberto
    Pavez-Signe, Matias
    MATHEMATICAL PROGRAMMING, 2019, 175 (1-2) : 241 - 262
  • [2] On the Convergence of the Inexact Running Krasnosel'skii-Mann Method
    Dall'Anese, Emiliano
    Simonetto, Andrea
    Bernstein, Andrey
    IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (03): : 613 - 618
  • [3] The convergence of the modified Mann and Ishikawa iterations in Banach spaces
    Xue, Zhiqun
    Lv, Guiwen
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [4] The convergence of the modified Mann and Ishikawa iterations in Banach spaces
    Zhiqun Xue
    Guiwen Lv
    Journal of Inequalities and Applications, 2013 (1)
  • [5] ON THE CONVERGENCE RATE OF THE KRASNOSEL'SKII-MANN ITERATION
    Matsushita, Shin-Ya
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 96 (01) : 162 - 170
  • [6] A steepest-descent Krasnosel’skii–Mann algorithm for a class of variational inequalities in Banach spaces
    Nguyen Buong
    Vu Xuan Quynh
    Nguyen Thi Thu Thuy
    Journal of Fixed Point Theory and Applications, 2016, 18 : 519 - 532
  • [7] A steepest-descent Krasnosel'skii-Mann algorithm for a class of variational inequalities in Banach spaces
    Nguyen Buong
    Vu Xuan Quynh
    Nguyen Thi Thu Thuy
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2016, 18 (03) : 519 - 532
  • [8] Krasnosel’skii type fixed point theorems in ordered Banach spaces
    Boucenna A.
    Djebali S.
    Moussaoui T.
    Afrika Matematika, 2017, 28 (7-8) : 1115 - 1129
  • [9] On the rate of convergence of Krasnosel’skiĭ-Mann iterations and their connection with sums of Bernoullis
    R. Cominetti
    J. A. Soto
    J. Vaisman
    Israel Journal of Mathematics, 2014, 199 : 757 - 772
  • [10] The comparison of the convergence speed between Picard, Mann, Krasnoselskij and Ishikawa iterations in Banach spaces
    Xue, Zhiqun
    FIXED POINT THEORY AND APPLICATIONS, 2008,