A numerical approach for singularly perturbed reaction diffusion type Volterra-Fredholm integro-differential equations

被引:0
|
作者
Muhammet Enes Durmaz
机构
[1] Kırklareli University,Department of Information Technology
关键词
Finite difference scheme; Integro-differential equation; Shishkin mesh; Singular perturbation; Uniform convergence; 65L11; 65L12; 65L20; 65R20;
D O I
暂无
中图分类号
学科分类号
摘要
The goal of this study is to introduce a second-order computational method to solve Volterra-Fredholm integro-differential equations involving boundary layers. To solve numerically, we establish a finite difference scheme on the Shishkin mesh using a composite trapezoidal formulae for the integral part and interpolating quadrature rules and the linear exponential basis functions for the differential part. We establish that the numerical scheme and rate of convergence are both second-order and converge uniformly with reference to the small ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-parameter. The efficacy of the approach is supported by testing the numerical scheme’s performance.
引用
收藏
页码:3601 / 3624
页数:23
相关论文
共 50 条
  • [31] ANALYSIS OF A NONLINEAR VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATION
    Aissaoui, M. Z.
    Bounaya, M. C.
    Guebbai, H.
    QUAESTIONES MATHEMATICAE, 2022, 45 (02) : 307 - 325
  • [32] A Novel Uniform Numerical Approach to Solve a Singularly Perturbed Volterra Integro-Differential Equation
    M. Cakir
    E. Cimen
    Computational Mathematics and Mathematical Physics, 2023, 63 : 1800 - 1816
  • [33] Uniform difference method for singularly perturbed Volterra integro-differential equations
    Amiraliyev, G. M.
    Sevgin, Sebaheddin
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 179 (02) : 731 - 741
  • [34] A Legendre tau approach for high-order pantograph Volterra-Fredholm integro-differential equations
    Zaky, Mahmoud A.
    Alharbi, Weam G.
    Alzubaidi, Marwa M.
    Matoog, R. T.
    AIMS MATHEMATICS, 2025, 10 (03): : 7067 - 7085
  • [35] A Novel Uniform Numerical Approach to Solve a Singularly Perturbed Volterra Integro-Differential Equation
    Cakir, M.
    Cimen, E.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2023, 63 (10) : 1800 - 1816
  • [36] On a New Class of Impulsive η-Hilfer Fractional Volterra-Fredholm Integro-Differential Equations
    Ismaael, F. M.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (04): : 691 - 704
  • [37] Existence and controllability results for neutral fractional Volterra-Fredholm integro-differential equations
    Gunasekar, Tharmalingam
    Raghavendran, Prabakaran
    Santra, Shyam Sundar
    Sajid, Mohammad
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 34 (04): : 361 - 380
  • [38] Solving Fractional Volterra-Fredholm Integro-Differential Equations via A** Iteration Method
    Ofem, Austine Efut
    Hussain, Aftab
    Joseph, Oboyi
    Udo, Mfon Okon
    Ishtiaq, Umar
    Al Sulami, Hamed
    Chikwe, Chukwuka Fernando
    AXIOMS, 2022, 11 (09)
  • [39] Existence and uniqueness results of mild solutions for integro-differential Volterra-Fredholm equations
    Hussain, Khawlah Hashim
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2023, 28 (02): : 137 - 144
  • [40] Uniqueness and Stability Results for Caputo Fractional Volterra-Fredholm Integro-Differential Equations
    Hamoud, Ahmed A.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2021, 14 (03): : 313 - 325