Prostate Cancer Detection using Deep Convolutional Neural Networks

被引:0
|
作者
Sunghwan Yoo
Isha Gujrathi
Masoom A. Haider
Farzad Khalvati
机构
[1] Lunenfeld-Tanenbaum Research Institute,Institute of Medical Science
[2] Sinai Health System,Department of Medical Imaging
[3] University of Toronto,Department of Mechanical and Industrial Engineering
[4] University of Toronto,undefined
[5] Sunnybrook Research Institute,undefined
[6] University of Toronto,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Prostate cancer is one of the most common forms of cancer and the third leading cause of cancer death in North America. As an integrated part of computer-aided detection (CAD) tools, diffusion-weighted magnetic resonance imaging (DWI) has been intensively studied for accurate detection of prostate cancer. With deep convolutional neural networks (CNNs) significant success in computer vision tasks such as object detection and segmentation, different CNN architectures are increasingly investigated in medical imaging research community as promising solutions for designing more accurate CAD tools for cancer detection. In this work, we developed and implemented an automated CNN-based pipeline for detection of clinically significant prostate cancer (PCa) for a given axial DWI image and for each patient. DWI images of 427 patients were used as the dataset, which contained 175 patients with PCa and 252 patients without PCa. To measure the performance of the proposed pipeline, a test set of 108 (out of 427) patients were set aside and not used in the training phase. The proposed pipeline achieved area under the receiver operating characteristic curve (AUC) of 0.87 (95%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\boldsymbol{ \% }}$$\end{document} Confidence Interval (CI): 0.84–0.90) and 0.84 (95%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\boldsymbol{ \% }}$$\end{document} CI: 0.76–0.91) at slice level and patient level, respectively.
引用
收藏
相关论文
共 50 条
  • [41] Detection and Classification of Human Stool Using Deep Convolutional Neural Networks
    Choy, Yin Pui
    Hu, Guoqing
    Chen, Jia
    IEEE ACCESS, 2021, 9 : 160485 - 160496
  • [42] Wheat Head Blast Detection Using Deep Convolutional Neural Networks
    Campos, M. Fernandez
    Huang, Y.
    Wang, T.
    Jahanshahi, M. R.
    Jin, J.
    Cruz, C. D.
    PHYTOPATHOLOGY, 2019, 109 (10) : 130 - 131
  • [43] Automated Detection of Diabetic Retinopathy Using Deep Convolutional Neural Networks
    Xu, Kele
    Zhu, Li
    Wang, Ruixing
    Liu, Chang
    Zhao, Yi
    MEDICAL PHYSICS, 2016, 43 (06) : 3406 - 3406
  • [44] Automatic mass detection in mammograms using deep convolutional neural networks
    Agarwal, Richa
    Diaz, Oliver
    Llado, Xavier
    Yap, Moi Hoon
    Marti, Robert
    JOURNAL OF MEDICAL IMAGING, 2019, 6 (03)
  • [45] Spectrographic Seizure Detection Using Deep Learning With Convolutional Neural Networks
    Yan, Peter
    Wang, Fei
    Grinspan, Zachary
    NEUROLOGY, 2018, 90
  • [46] Detection and Segmentation of Rice Diseases Using Deep Convolutional Neural Networks
    Rai C.K.
    Pahuja R.
    SN Computer Science, 4 (5)
  • [47] Driver behavior detection and classification using deep convolutional neural networks
    Shahverdy, Mohammad
    Fathy, Mahmood
    Berangi, Reza
    Sabokrou, Mohammad
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 149
  • [48] Accurate lithography hotspot detection using deep convolutional neural networks
    Shin, Moojoon
    Lee, Jee-Hyong
    JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS, 2016, 15 (04):
  • [49] Driver behavior detection and classification using deep convolutional neural networks
    Shahverdy, Mohammad
    Fathy, Mahmood
    Berangi, Reza
    Sabokrou, Mohammad
    Expert Systems with Applications, 2020, 149
  • [50] Deep Tessellated Retinal Image Detection using Convolutional Neural Networks
    Lyu, Xingzheng
    Li, Hai
    Zhen, Yi
    Ji, Xin
    Zhang, Sanyuan
    2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2017, : 676 - 680