Discretizing dynamical systems with generalized Hopf bifurcations

被引:0
|
作者
Joseph Páez Chávez
机构
[1] Instituto de Ciencias Matemáticas,
[2] Escuela Superior Politécnica del Litoral,undefined
来源
Numerische Mathematik | 2011年 / 118卷
关键词
65P30; 65L99; 37C10;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the discretizations of parameter-dependent, continuous-time dynamical systems. We show that the general one-step methods shift a generalized Hopf bifurcation and turn it into a generalized Neimark–Sacker point. We analyze the effect of discretization methods on the emanating Hopf curve. In particular, we obtain estimates for the eigenvalues of the discretized system along this curve. A detailed analysis of the discretized first Lyapunov coefficient is also given. The results are illustrated by a numerical example. Dynamical consequences are discussed.
引用
收藏
页码:229 / 246
页数:17
相关论文
共 50 条
  • [41] Hopf and Bautin bifurcations in a generalized Lengyel-Epstein system
    Valenzuela, Luis Miguel
    Ble, Gamaliel
    Falconi, Manuel
    Guerrero, David
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (02) : 497 - 515
  • [42] Simplest normal forms of generalized high codimensional Hopf bifurcations
    Ding, Yu-Mei
    Zhang, Qi-Chang
    Zhendong yu Chongji/Journal of Vibration and Shock, 2012, 31 (24): : 143 - 147
  • [43] Hopf Bifurcations, Periodic Windows and Intermittency in the Generalized Lorenz Model
    Wawrzaszek, Anna
    Krasinska, Agata
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (14):
  • [44] Bifurcations in dynamical systems with interior symmetry
    Antoneli, Fernando
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2010, 25 (02): : 239 - 251
  • [45] On suppression of bifurcations in continuous dynamical systems
    Li, Changpin
    Chen, Guanrong
    Huang, Ziyuan
    Song, Tieyan
    2006 CHINESE CONTROL CONFERENCE, VOLS 1-5, 2006, : 627 - +
  • [46] Normal forms of dynamical systems and bifurcations
    Cicogna, C
    BIFURCATION, SYMMETRY AND PATTERNS, 2003, : 129 - 134
  • [47] Bifurcations and chaos in simple dynamical systems
    Theivasanthi, T.
    INTERNATIONAL JOURNAL OF THE PHYSICAL SCIENCES, 2009, 4 (12): : 824 - 834
  • [48] Generalized Hopf Bifurcation for Non-smooth Planar Dynamical Systems:the Corner Case
    邹永魁
    黄明游
    NortheasternMathematicalJournal, 2001, (04) : 379 - 382
  • [49] Gap bifurcations in nonlinear dynamical systems
    Rizzato, FB
    Pakter, R
    PHYSICAL REVIEW LETTERS, 2002, 89 (18) : 1 - 184102
  • [50] Discretizing the transcritical and pitchfork bifurcations - conjugacy results
    Loczi, Lajos
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2015, 21 (03) : 155 - 196