Nonparallel least square support vector machine for classification

被引:0
|
作者
Jiang Zhao
Zhiji Yang
Yitian Xu
机构
[1] China Agricultural University,College of Science
来源
Applied Intelligence | 2016年 / 45卷
关键词
Support vector machine; Nonparallel hyper-planes; Intersection angle; Least square;
D O I
暂无
中图分类号
学科分类号
摘要
Nonparallel support vector machine based on one optimization problem (NSVMOOP) aims at finding two nonparallel hyper-planes by maximizing the intersection angle of their normal vectors w1 and w2. As maximum intersection angle preserves both compactness and separation of data, NSVMOOP yields good forecasting accuracy. However, as it solves one large quadratic programming problem (QPP), it costs high running time. In order to improve its learning speed, a novel nonparallel least square support vector machine (NLSSVM) is proposed in this paper. NLSSVM solves a linear system of equations instead of solving one large QPP. As both intersection angle and least square version are applied on our NLSSVM, it performs better generalization performance than other algorithms. Experimental results on twenty benchmark datasets demonstrate its validity.
引用
收藏
页码:1119 / 1128
页数:9
相关论文
共 50 条
  • [41] Forecasting the runoff using least square support vector machine
    Feng Lijun
    Li Shuquan
    PROCEEDINGS OF THE 2007 INTERNATIONAL CONFERENCE ON AGRICULTURE ENGINEERING, 2007, : 884 - 889
  • [42] Least square support vector machine for structural reliability analysis
    Zhu, Changxing
    Zhao, Hongbo
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2016, 53 (01) : 51 - 61
  • [43] An Optimal Sparseness Approach for Least Square Support Vector Machine
    Luo, Jia
    Chen, Shihe
    Wu, Le
    Zhang, Shirong
    26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 3621 - 3626
  • [44] Credit risk evaluation with least square support vector machine
    Lai, Kin Keung
    Yu, Lean
    Zhou, Ligang
    Wang, Shouyang
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, PROCEEDINGS, 2006, 4062 : 490 - 495
  • [45] Runoff simulation Based on Least Square Support Vector Machine
    Liu Jun Ping
    Zhou Jun Jie
    Zou Xian Bai
    PROCEEDINGS OF THE 2016 5TH INTERNATIONAL CONFERENCE ON CIVIL, ARCHITECTURAL AND HYDRAULIC ENGINEERING (ICCAHE 2016), 2016, 95 : 885 - 890
  • [46] Relation between a support vector machine and the least square method
    Yan, Hui
    Zhang, Xuegong
    Li, Yanda
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2001, 41 (09): : 77 - 80
  • [47] All-in-one multicategory least squares nonparallel hyperplanes support vector machine
    Kumar, Deepak
    Thakur, Manoj
    PATTERN RECOGNITION LETTERS, 2018, 105 : 165 - 174
  • [48] The application of least squares support vector machine for classification
    Liu, Bo
    Hao, Zhifeng
    Yang, Xiaowei
    ADVANCES IN MATRIX THEORY AND APPLICATIONS, 2006, : 265 - 268
  • [49] Fused robust geometric nonparallel hyperplane support vector machine for pattern classification
    Gao, Ruiyao
    Qi, Kai
    Yang, Hu
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 236
  • [50] The application of least squares support vector machine for classification
    Hao, Zhifeng
    Liu, Bo
    Yang, Xiaowei
    ADVANCES IN MATRIX THEORY AND APPLICATIONS, 2006, : 24 - 27