Rapid COVID-19 diagnosis using ensemble deep transfer learning models from chest radiographic images

被引:0
|
作者
Neha Gianchandani
Aayush Jaiswal
Dilbag Singh
Vijay Kumar
Manjit Kaur
机构
[1] Manipal University Jaipur,Department of Computer Science and Engineering, School of Computing and Information Technology
[2] Bennett University,Computer Science Engineering, School of Engineering and Applied Sciences
[3] National Institute of Technology Hamirpur,Department of Computer Science and Engineering
关键词
COVID-19; SARS-CoV-2; Transfer learning; Chest X-ray; Ensemble models;
D O I
暂无
中图分类号
学科分类号
摘要
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes novel coronavirus disease (COVID-19) outbreak in more than 200 countries around the world. The early diagnosis of infected patients is needed to discontinue this outbreak. The diagnosis of coronavirus infection from radiography images is the fastest method. In this paper, two different ensemble deep transfer learning models have been designed for COVID-19 diagnosis utilizing the chest X-rays. Both models have utilized pre-trained models for better performance. They are able to differentiate COVID-19, viral pneumonia, and bacterial pneumonia. Both models have been developed to improve the generalization capability of the classifier for binary and multi-class problems. The proposed models have been tested on two well-known datasets. Experimental results reveal that the proposed framework outperforms the existing techniques in terms of sensitivity, specificity, and accuracy.
引用
收藏
页码:5541 / 5553
页数:12
相关论文
共 50 条
  • [31] Role of standard and soft tissue chest radiography images in COVID-19 diagnosis using deep learning
    Hu, Qiyuan
    Drukker, Karen
    Giger, Maryellen L.
    MEDICAL IMAGING 2021: COMPUTER-AIDED DIAGNOSIS, 2021, 11597
  • [32] Detecting COVID-19 in chest images based on deep transfer learning and machine learning algorithms
    Seyed Masoud Rezaeijo
    Mohammadreza Ghorvei
    Razzagh Abedi-Firouzjah
    Hesam Mojtahedi
    Hossein Entezari Zarch
    Egyptian Journal of Radiology and Nuclear Medicine, 52
  • [33] Comparison of deep learning architectures for COVID-19 diagnosis using chest X-ray images
    Sampen, Denilson
    Lavarello, Roberto
    MEDICAL IMAGING 2022: IMAGE PERCEPTION, OBSERVER PERFORMANCE, AND TECHNOLOGY ASSESSMENT, 2022, 12035
  • [34] Detecting COVID-19 in chest images based on deep transfer learning and machine learning algorithms
    Rezaeijo, Seyed Masoud
    Ghorvei, Mohammadreza
    Abedi-Firouzjah, Razzagh
    Mojtahedi, Hesam
    Zarch, Hossein Entezari
    EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE, 2021, 52 (01):
  • [35] COVID-19 recognition from chest X-ray images by combining deep learning with transfer learning
    Zhang, Chang-Jiang
    Ruan, Lu-Ting
    Ji, Ling-Feng
    Feng, Li-Li
    Tang, Fu-Qin
    DIGITAL HEALTH, 2025, 11
  • [36] An efficient mixture of deep and machine learning models for COVID-19 diagnosis in chest X-ray images
    Wang, Dingding
    Mo, Jiaqing
    Zhou, Gang
    Xu, Liang
    Liu, Yajun
    PLOS ONE, 2020, 15 (11):
  • [37] COVIDnet: An Efficient Deep Learning Model for COVID-19 Diagnosis on Chest CT Images
    Kiruba, Briskline S.
    Murugan, D.
    Petchiammal, A.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (11) : 832 - 839
  • [38] Automatic detection of COVID-19 from chest CT scan and chest X-Rays images using deep learning, transfer learning and stacking
    Jangam, Ebenezer
    Barreto, Aaron Antonio Dias
    Annavarapu, Chandra Sekhara Rao
    APPLIED INTELLIGENCE, 2022, 52 (02) : 2243 - 2259
  • [39] Automatic detection of COVID-19 from chest CT scan and chest X-Rays images using deep learning, transfer learning and stacking
    Ebenezer Jangam
    Aaron Antonio Dias Barreto
    Chandra Sekhara Rao Annavarapu
    Applied Intelligence, 2022, 52 : 2243 - 2259
  • [40] Lightweight deep learning models for detecting COVID-19 from chest X-ray images
    Karakanis, Stefanos
    Leontidis, Georgios
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 130 (130)