Global structure of positive solutions for p-Laplacian Neumann problem with indefinite weight

被引:0
|
作者
Ruyun Ma
Lijuan Yang
Yali Zhang
机构
[1] Northwest Normal University,Department of Mathematics
来源
Computational and Applied Mathematics | 2024年 / 43卷
关键词
Neumann problem; Two positive solutions; Indefinite weight; Bifurcation; 34B09; 34C23;
D O I
暂无
中图分类号
学科分类号
摘要
We are concerned with the global structure of positive solutions for p-Laplacian Neumann problem: [graphic not available: see fulltext] where φp(s)=|s|p-2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi _p(s)=\vert s\vert ^{p-2}s$$\end{document}, p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document}, λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document} is a parameter, h:[0,1]→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h:[0,1]\rightarrow \mathbb {R}$$\end{document} is a continuous function with ∫01h(x)dx<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int _0^1h(x)\text {d}x<0$$\end{document}, g:[0,∞)→[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g:[0,\infty )\rightarrow [0,\infty )$$\end{document} is a continuous function satisfying lims→0g(s)/φp(s)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{s\rightarrow 0}g(s)/\varphi _p(s)=0$$\end{document} and lims→∞g(s)/φp(s)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{s\rightarrow \infty }g(s)/\varphi _p(s)=0$$\end{document}. We obtain a ⊂\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\subset $$\end{document}-shaped component of positive solutions of problem (P) provided suitable conditions. That is, there exist λ∗>λ∗>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda ^*>\lambda _*>0$$\end{document}, such that the problem (P) has two positive solutions for λ>λ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >\lambda ^*$$\end{document} and no positive solution for λ<λ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda <\lambda _*$$\end{document}. The proof of main result is based upon bifurcation technology. In addition, to prove the main result, we investigate the principal eigenvalue of auxiliary problem: -(φp(u′))′+1mφp(u)=λh(x)φp(u),x∈(0,1),u′(0)=u′(1)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{l} -(\varphi _p(u'))'+\frac{1}{m}\varphi _p(u)=\lambda h(x) \varphi _p(u),\ \ x\in (0,1),\\ u'(0)=u'(1)=0, \ \ \\ \end{array}\right. \end{aligned}$$\end{document}where m∈N+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\in \mathbb {N}^+$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Global structure of positive solutions for p-Laplacian Neumann problem with indefinite weight
    Ma, Ruyun
    Yang, Lijuan
    Zhang, Yali
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (03):
  • [2] Global structure of positive solutions for a Neumann problem with indefinite weight in Minkowski space
    Ruyun Ma
    Xiaoxiao Su
    Zhongzi Zhao
    Journal of Fixed Point Theory and Applications, 2023, 25
  • [3] Global structure of positive solutions for a Neumann problem with indefinite weight in Minkowski space
    Ma, Ruyun
    Su, Xiaoxiao
    Zhao, Zhongzi
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2023, 25 (02)
  • [4] Positive solutions for the Neumann p-Laplacian
    Averna, Diego
    Papageorgiou, Nikolaos S.
    Tornatore, Elisabetta
    MONATSHEFTE FUR MATHEMATIK, 2018, 185 (04): : 557 - 573
  • [5] Positive solutions for the Neumann p-Laplacian
    Diego Averna
    Nikolaos S. Papageorgiou
    Elisabetta Tornatore
    Monatshefte für Mathematik, 2018, 185 : 557 - 573
  • [6] STEKLOV PROBLEM WITH AN INDEFINITE WEIGHT FOR THE p-LAPLACIAN
    Torne, Olaf
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2005,
  • [7] INFINITELY MANY RADIAL SOLUTIONS FOR A p-LAPLACIAN PROBLEM WITH INDEFINITE WEIGHT
    Castro, Alfonso
    Cossio, Jorge
    Herron, Sigifredo
    Velez, Carlos
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (10) : 4805 - 4821
  • [8] Three positive solutions of N-dimensional p-Laplacian with indefinite weight
    Chen, Tianlan
    Ma, Ruyun
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2019, (19) : 1 - 14
  • [9] Existence of multiple positive solutions for p-Laplacian problems with a general indefinite weight
    Kim, Chan-Gyun
    Lee, Yong-Hoon
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (03) : 337 - 362
  • [10] Infinitely many sign-changing solutions for p-Laplacian Neumann problems with indefinite weight
    He, Tieshan
    Chen, Chuanyong
    Huang, Yehui
    Hou, Chaojun
    APPLIED MATHEMATICS LETTERS, 2015, 39 : 73 - 79